The hepcidin-ferroportin axis influences mitochondrial function, proliferation, and migration in pulmonary artery endothelial and smooth muscle cells.

IF 2.2 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Pulmonary Circulation Pub Date : 2024-12-18 eCollection Date: 2024-10-01 DOI:10.1002/pul2.70006
Theo Issitt, Quezia K Toe, Sofia L Pedersen, Thomas Shackshaft, Maziah Mohd Ghazaly, Laura West, Nadine D Arnold, Abdul Mahomed, George W Kagugube, Latha Ramakrishnan, Allan Lawrie, Gregory J Quinlan, S John Wort
{"title":"The hepcidin-ferroportin axis influences mitochondrial function, proliferation, and migration in pulmonary artery endothelial and smooth muscle cells.","authors":"Theo Issitt, Quezia K Toe, Sofia L Pedersen, Thomas Shackshaft, Maziah Mohd Ghazaly, Laura West, Nadine D Arnold, Abdul Mahomed, George W Kagugube, Latha Ramakrishnan, Allan Lawrie, Gregory J Quinlan, S John Wort","doi":"10.1002/pul2.70006","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated circulating hepcidin levels have been reported in patients with pulmonary artery hypertension (PAH). Hepcidin has been shown to promote proliferation of human pulmonary artery smooth muscle cells (PASMCs) in vitro, suggesting a potential role in PAH pathogenesis. However, the role of human pulmonary artery endothelial cells (PAECs) as either a source of hepcidin, or the effect of hepcidin on PAEC function is not as well described. The objective of this study was to define the role of the hepcidin-ferroportin axis on the phenotype of PAEC and to study potential PAEC-PASMC interactions relevant to the pathogenesis of pulmonary vascular remodeling and PAH. PAECs treated with hepcidin, or interleukin-6 were investigated for both ferroportin and hepcidin release and regulation using immunofluorescence, mRNA levels and cellular release assays. Effects of hepcidin on PASMC and PAEC mitochondrial function was investigated using immunofluorescence and seahorse assay. Migration and proliferation of PASMCs treated with conditioned media from hPAEC treated with hepcidin was investigated using the xCELLigence system and other tools. We demonstrate in this study that PAECs express ferroportin; hepcidin treatment of PAECs resulted in mitochondrial iron accumulation and intracellular hepcidin biosynthesis and release. Conditioned media from hepcidin treated PAECs caused PASMCs to down-regulate ferroportin expression whilst promoting migration and proliferation. Inhibition of hepcidin in PAEC conditioned media limited these responses. PASMC cellular and mitochondrial iron retention are associated with migratory and proliferative responses. This study confirms that the hepcidin ferroportin axis is present and operational in PAECs. Modulation of this axis shows distinct differences in responses seen between PAECS and PASMCs. Stimulation of this axis in PAECs with hepcidin may well institute proliferative and migratory responses in PASMCs of relevance to pathogenesis of PAH offering potential novel therapeutic targets.</p>","PeriodicalId":20927,"journal":{"name":"Pulmonary Circulation","volume":"14 4","pages":"e70006"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulmonary Circulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pul2.70006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated circulating hepcidin levels have been reported in patients with pulmonary artery hypertension (PAH). Hepcidin has been shown to promote proliferation of human pulmonary artery smooth muscle cells (PASMCs) in vitro, suggesting a potential role in PAH pathogenesis. However, the role of human pulmonary artery endothelial cells (PAECs) as either a source of hepcidin, or the effect of hepcidin on PAEC function is not as well described. The objective of this study was to define the role of the hepcidin-ferroportin axis on the phenotype of PAEC and to study potential PAEC-PASMC interactions relevant to the pathogenesis of pulmonary vascular remodeling and PAH. PAECs treated with hepcidin, or interleukin-6 were investigated for both ferroportin and hepcidin release and regulation using immunofluorescence, mRNA levels and cellular release assays. Effects of hepcidin on PASMC and PAEC mitochondrial function was investigated using immunofluorescence and seahorse assay. Migration and proliferation of PASMCs treated with conditioned media from hPAEC treated with hepcidin was investigated using the xCELLigence system and other tools. We demonstrate in this study that PAECs express ferroportin; hepcidin treatment of PAECs resulted in mitochondrial iron accumulation and intracellular hepcidin biosynthesis and release. Conditioned media from hepcidin treated PAECs caused PASMCs to down-regulate ferroportin expression whilst promoting migration and proliferation. Inhibition of hepcidin in PAEC conditioned media limited these responses. PASMC cellular and mitochondrial iron retention are associated with migratory and proliferative responses. This study confirms that the hepcidin ferroportin axis is present and operational in PAECs. Modulation of this axis shows distinct differences in responses seen between PAECS and PASMCs. Stimulation of this axis in PAECs with hepcidin may well institute proliferative and migratory responses in PASMCs of relevance to pathogenesis of PAH offering potential novel therapeutic targets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pulmonary Circulation
Pulmonary Circulation Medicine-Pulmonary and Respiratory Medicine
CiteScore
4.20
自引率
11.50%
发文量
153
审稿时长
15 weeks
期刊介绍: Pulmonary Circulation''s main goal is to encourage basic, translational, and clinical research by investigators, physician-scientists, and clinicans, in the hope of increasing survival rates for pulmonary hypertension and other pulmonary vascular diseases worldwide, and developing new therapeutic approaches for the diseases. Freely available online, Pulmonary Circulation allows diverse knowledge of research, techniques, and case studies to reach a wide readership of specialists in order to improve patient care and treatment outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信