Ethical and Bias Considerations in Artificial Intelligence (AI)/Machine Learning.

IF 7.1 1区 医学 Q1 PATHOLOGY
Matthew Hanna, Liron Pantanowitz, Brian Jackson, Octavia Palmer, Shyam Visweswaran, Joshua Pantanowitz, Mustafa Deebajah, Hooman Rashidi
{"title":"Ethical and Bias Considerations in Artificial Intelligence (AI)/Machine Learning.","authors":"Matthew Hanna, Liron Pantanowitz, Brian Jackson, Octavia Palmer, Shyam Visweswaran, Joshua Pantanowitz, Mustafa Deebajah, Hooman Rashidi","doi":"10.1016/j.modpat.2024.100686","DOIUrl":null,"url":null,"abstract":"<p><p>As artificial intelligence (AI) gains prominence in pathology and medicine, the ethical implications and potential biases within such integrated AI models will require careful scrutiny. Ethics and bias are important considerations in our practice settings, especially as increased number of machine learning (ML) systems are being integrated within our various medical domains. Such machine learning based systems, have demonstrated remarkable capabilities in specified tasks such as but not limited to image recognition, natural language processing, and predictive analytics. However, the potential bias that may exist within such AI-ML models can also inadvertently lead to unfair and potentially detrimental outcomes. The source of bias within such machine learning models can be due to numerous factors but can be typically put in three main buckets (data bias, development bias and interaction bias). These could be due to the training data, algorithmic bias, feature engineering and selection issues, clinical and institutional bias (i.e. practice variability), reporting bias, and temporal bias (i.e. changes in technology, clinical practice or disease patterns). Therefore despite the potential of these AI-ML applications, their deployment in our day to day practice also raises noteworthy ethical concerns. To address ethics and bias in medicine, a comprehensive evaluation process is required which will encompass all aspects such systems, from model development through clinical deployment. Addressing these biases is crucial to ensure that AI-ML systems remain fair, transparent, and beneficial to all. This review will discuss the relevant ethical and bias considerations in AI-ML specifically within the pathology and medical domain.</p>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":" ","pages":"100686"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.modpat.2024.100686","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As artificial intelligence (AI) gains prominence in pathology and medicine, the ethical implications and potential biases within such integrated AI models will require careful scrutiny. Ethics and bias are important considerations in our practice settings, especially as increased number of machine learning (ML) systems are being integrated within our various medical domains. Such machine learning based systems, have demonstrated remarkable capabilities in specified tasks such as but not limited to image recognition, natural language processing, and predictive analytics. However, the potential bias that may exist within such AI-ML models can also inadvertently lead to unfair and potentially detrimental outcomes. The source of bias within such machine learning models can be due to numerous factors but can be typically put in three main buckets (data bias, development bias and interaction bias). These could be due to the training data, algorithmic bias, feature engineering and selection issues, clinical and institutional bias (i.e. practice variability), reporting bias, and temporal bias (i.e. changes in technology, clinical practice or disease patterns). Therefore despite the potential of these AI-ML applications, their deployment in our day to day practice also raises noteworthy ethical concerns. To address ethics and bias in medicine, a comprehensive evaluation process is required which will encompass all aspects such systems, from model development through clinical deployment. Addressing these biases is crucial to ensure that AI-ML systems remain fair, transparent, and beneficial to all. This review will discuss the relevant ethical and bias considerations in AI-ML specifically within the pathology and medical domain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Pathology
Modern Pathology 医学-病理学
CiteScore
14.30
自引率
2.70%
发文量
174
审稿时长
18 days
期刊介绍: Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology. Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信