PRMT5-regulated splicing of DNA repair genes drives chemoresistance in breast cancer stem cells.

IF 6.9 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Matthew S Gillespie, Kelly Chiang, Gemma L Regan-Mochrie, Soo-Youn Choi, Ciara M Ward, Debashish Sahay, Paloma Garcia, Roland Arnold, Clare C Davies
{"title":"PRMT5-regulated splicing of DNA repair genes drives chemoresistance in breast cancer stem cells.","authors":"Matthew S Gillespie, Kelly Chiang, Gemma L Regan-Mochrie, Soo-Youn Choi, Ciara M Ward, Debashish Sahay, Paloma Garcia, Roland Arnold, Clare C Davies","doi":"10.1038/s41388-024-03264-1","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer stem cells (BCSCs) are a rare cell population that is responsible for tumour initiation, metastasis and chemoresistance. Despite this, the mechanism by which BCSCs withstand genotoxic stress is largely unknown. Here, we uncover a pivotal role for the arginine methyltransferase PRMT5 in mediating BCSC chemoresistance by modulating DNA repair efficiency. Mechanistically, we identify PRMT5 as a major regulator of DNA damage response (DDR) gene splicing in BCSCs, particularly those integral to the Fanconi Anaemia and homologous recombination pathways, with PRMT5 inhibition synergising with chemotherapy to promote BCSC apoptosis. A comparison of BCSCs and their bulk cell progeny identified some shared (ATM, DDX11, EXO1, FAN1, SLX4) but many unique (ATR, RAD17, RAD51D, RUVBL1) PRMT5-dependent alternative DDR splicing events. Surprisingly, these skipped exons and retained intron events rarely lead to substantial gene expression repression, suggesting that PRMT5 inhibition predominantly results in nuclear detention of intron-containing transcripts and the production of non-canonical isoforms with compromised protein function. Since many genes within the same DDR pathway undergo deregulated splicing, this study thus reveals additional points of vulnerability and alternative combination drug strategies that could improve the therapeutic efficacy of PRMT5 inhibitors to promote BCSC eradication.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-024-03264-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer stem cells (BCSCs) are a rare cell population that is responsible for tumour initiation, metastasis and chemoresistance. Despite this, the mechanism by which BCSCs withstand genotoxic stress is largely unknown. Here, we uncover a pivotal role for the arginine methyltransferase PRMT5 in mediating BCSC chemoresistance by modulating DNA repair efficiency. Mechanistically, we identify PRMT5 as a major regulator of DNA damage response (DDR) gene splicing in BCSCs, particularly those integral to the Fanconi Anaemia and homologous recombination pathways, with PRMT5 inhibition synergising with chemotherapy to promote BCSC apoptosis. A comparison of BCSCs and their bulk cell progeny identified some shared (ATM, DDX11, EXO1, FAN1, SLX4) but many unique (ATR, RAD17, RAD51D, RUVBL1) PRMT5-dependent alternative DDR splicing events. Surprisingly, these skipped exons and retained intron events rarely lead to substantial gene expression repression, suggesting that PRMT5 inhibition predominantly results in nuclear detention of intron-containing transcripts and the production of non-canonical isoforms with compromised protein function. Since many genes within the same DDR pathway undergo deregulated splicing, this study thus reveals additional points of vulnerability and alternative combination drug strategies that could improve the therapeutic efficacy of PRMT5 inhibitors to promote BCSC eradication.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncogene
Oncogene 医学-生化与分子生物学
CiteScore
15.30
自引率
1.20%
发文量
404
审稿时长
1 months
期刊介绍: Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge. Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信