Lucas Alexander Polson, Pedro Esquinas, Sara Kurkowska, Chenguang Li, Peyman Sheikhzadeh, Mehrshad Abbasi, Saeed Farzenefar, Seyyede Mirabedian, Carlos Felipe Uribe, Arman Rahmim
{"title":"Computationally efficient collimator-detector response compensation in high energy SPECT using 1D convolutions and rotations.","authors":"Lucas Alexander Polson, Pedro Esquinas, Sara Kurkowska, Chenguang Li, Peyman Sheikhzadeh, Mehrshad Abbasi, Saeed Farzenefar, Seyyede Mirabedian, Carlos Felipe Uribe, Arman Rahmim","doi":"10.1088/1361-6560/ada10a","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Modeling of the collimator-detector response (CDR) in SPECT reconstruction enables improved resolution and accuracy, and is thus important for quantitative imaging applications such as dosimetry. The implementation of CDR modeling, however, can become a computational bottleneck when there are substantial components of septal penetration and scatter in the acquired data, since a direct convolution-based approach requires large 2D kernels. This work proposes a 1D convolution and rotation-based CDR model that reduces reconstruction times but maintains consistency with models that employ 2D convolutions. To enable open-source development and use of these models in image reconstruction, we release a SPECTPSFToolbox repository for the PyTomography project on GitHub.</p><p><strong>Approach: </strong>A 1D/rotation-based CDR model was formulated and subsequently fit to Monte Carlo point source data representative of Lu-177, I-131, and Ac-225 imaging. Computation times of (i) the proposed 1D/rotation-based model and (ii) a traditional model that uses 2D convolutions were compared for typical SPECT matrix sizes. Both CDR models were then used in the reconstruction of Monte Carlo, physical phantom, and patient data; the models were compared by quantifying total counts in hot regions of interest (ROIs) and activity contrast between hot ROIs and background regions.</p><p><strong>Results: </strong>For typical matrix sizes in SPECT reconstruction, application of the 1D/rotation-based model provides a two-fold computational speed-up over the 2D model when running on GPU. Only small differences between the 1D/rotation-based and 2D models (order of 1%) were obtained for count and contrast quantification in select ROIs.</p><p><strong>Significance: </strong>A technique for CDR modeling in SPECT was proposed that (i) significantly speeds up reconstruction times, and (ii) yields nearly identical reconstructions to traditional 2D convolution based CDR techniques. The released toolbox will permit open-source development of similar models for different isotopes and collimators.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ada10a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Modeling of the collimator-detector response (CDR) in SPECT reconstruction enables improved resolution and accuracy, and is thus important for quantitative imaging applications such as dosimetry. The implementation of CDR modeling, however, can become a computational bottleneck when there are substantial components of septal penetration and scatter in the acquired data, since a direct convolution-based approach requires large 2D kernels. This work proposes a 1D convolution and rotation-based CDR model that reduces reconstruction times but maintains consistency with models that employ 2D convolutions. To enable open-source development and use of these models in image reconstruction, we release a SPECTPSFToolbox repository for the PyTomography project on GitHub.
Approach: A 1D/rotation-based CDR model was formulated and subsequently fit to Monte Carlo point source data representative of Lu-177, I-131, and Ac-225 imaging. Computation times of (i) the proposed 1D/rotation-based model and (ii) a traditional model that uses 2D convolutions were compared for typical SPECT matrix sizes. Both CDR models were then used in the reconstruction of Monte Carlo, physical phantom, and patient data; the models were compared by quantifying total counts in hot regions of interest (ROIs) and activity contrast between hot ROIs and background regions.
Results: For typical matrix sizes in SPECT reconstruction, application of the 1D/rotation-based model provides a two-fold computational speed-up over the 2D model when running on GPU. Only small differences between the 1D/rotation-based and 2D models (order of 1%) were obtained for count and contrast quantification in select ROIs.
Significance: A technique for CDR modeling in SPECT was proposed that (i) significantly speeds up reconstruction times, and (ii) yields nearly identical reconstructions to traditional 2D convolution based CDR techniques. The released toolbox will permit open-source development of similar models for different isotopes and collimators.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry