Quan Tang, Liming Xu, Yongheng Wang, Bochuan Zheng, Jiancheng Lv, Xianhua Zeng, Weisheng Li
{"title":"Dual-modality visual feature flow for medical report generation.","authors":"Quan Tang, Liming Xu, Yongheng Wang, Bochuan Zheng, Jiancheng Lv, Xianhua Zeng, Weisheng Li","doi":"10.1016/j.media.2024.103413","DOIUrl":null,"url":null,"abstract":"<p><p>Medical report generation, a cross-modal task of generating medical text information, aiming to provide professional descriptions of medical images in clinical language. Despite some methods have made progress, there are still some limitations, including insufficient focus on lesion areas, omission of internal edge features, and difficulty in aligning cross-modal data. To address these issues, we propose Dual-Modality Visual Feature Flow (DMVF) for medical report generation. Firstly, we introduce region-level features based on grid-level features to enhance the method's ability to identify lesions and key areas. Then, we enhance two types of feature flows based on their attributes to prevent the loss of key information, respectively. Finally, we align visual mappings from different visual feature with report textual embeddings through a feature fusion module to perform cross-modal learning. Extensive experiments conducted on four benchmark datasets demonstrate that our approach outperforms the state-of-the-art methods in both natural language generation and clinical efficacy metrics.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103413"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103413","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Medical report generation, a cross-modal task of generating medical text information, aiming to provide professional descriptions of medical images in clinical language. Despite some methods have made progress, there are still some limitations, including insufficient focus on lesion areas, omission of internal edge features, and difficulty in aligning cross-modal data. To address these issues, we propose Dual-Modality Visual Feature Flow (DMVF) for medical report generation. Firstly, we introduce region-level features based on grid-level features to enhance the method's ability to identify lesions and key areas. Then, we enhance two types of feature flows based on their attributes to prevent the loss of key information, respectively. Finally, we align visual mappings from different visual feature with report textual embeddings through a feature fusion module to perform cross-modal learning. Extensive experiments conducted on four benchmark datasets demonstrate that our approach outperforms the state-of-the-art methods in both natural language generation and clinical efficacy metrics.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.