Deep Learning techniques to detect and analysis of multiple sclerosis through MRI: A systematic literature review.

IF 7 2区 医学 Q1 BIOLOGY
Computers in biology and medicine Pub Date : 2025-02-01 Epub Date: 2024-12-17 DOI:10.1016/j.compbiomed.2024.109530
Priyanka Belwal, Surendra Singh
{"title":"Deep Learning techniques to detect and analysis of multiple sclerosis through MRI: A systematic literature review.","authors":"Priyanka Belwal, Surendra Singh","doi":"10.1016/j.compbiomed.2024.109530","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning (DL) techniques represent a rapidly advancing field within artificial intelligence, gaining significant prominence in the detection and analysis of various medical conditions through the analysis of medical data. This study presents a systematic literature review (SLR) focused on deep learning methods for the detection and analysis of multiple sclerosis (MS) using magnetic resonance imaging (MRI). The initial search identified 401 articles, which were rigorously screened, a selection of 82 highly relevant studies. These selected studies primarily concentrate on key areas such as multiple sclerosis, deep learning, convolutional neural networks (CNN), lesion segmentation, and classification, reflecting their alignment with the current state of the art. This review comprehensively examines diverse deep-learning approaches for MS detection and analysis, offering a valuable resource for researchers. Additionally, it presents key insights by summarizing these DL techniques for MS detection and analysis using MRI in a structured tabular format.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109530"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109530","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning (DL) techniques represent a rapidly advancing field within artificial intelligence, gaining significant prominence in the detection and analysis of various medical conditions through the analysis of medical data. This study presents a systematic literature review (SLR) focused on deep learning methods for the detection and analysis of multiple sclerosis (MS) using magnetic resonance imaging (MRI). The initial search identified 401 articles, which were rigorously screened, a selection of 82 highly relevant studies. These selected studies primarily concentrate on key areas such as multiple sclerosis, deep learning, convolutional neural networks (CNN), lesion segmentation, and classification, reflecting their alignment with the current state of the art. This review comprehensively examines diverse deep-learning approaches for MS detection and analysis, offering a valuable resource for researchers. Additionally, it presents key insights by summarizing these DL techniques for MS detection and analysis using MRI in a structured tabular format.

通过MRI检测和分析多发性硬化的深度学习技术:系统的文献综述。
深度学习(DL)技术代表了人工智能中一个快速发展的领域,通过对医疗数据的分析,在检测和分析各种医疗状况方面取得了显著的成就。本研究对磁共振成像(MRI)检测和分析多发性硬化症(MS)的深度学习方法进行了系统的文献综述(SLR)。最初的搜索确定了401篇文章,经过严格筛选,从中选择了82篇高度相关的研究。这些选定的研究主要集中在关键领域,如多发性硬化症、深度学习、卷积神经网络(CNN)、病变分割和分类,反映了它们与当前技术水平的一致性。本综述全面考察了质谱检测和分析的各种深度学习方法,为研究人员提供了宝贵的资源。此外,它还通过以结构化表格格式总结了这些用于MRI的MS检测和分析的DL技术,提出了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信