A novel method to enhance medical image reconstruction using Genetic Algorithm and Incremental Principal Component Analysis.

IF 7 2区 医学 Q1 BIOLOGY
Tuğba Özge Onur
{"title":"A novel method to enhance medical image reconstruction using Genetic Algorithm and Incremental Principal Component Analysis.","authors":"Tuğba Özge Onur","doi":"10.1016/j.compbiomed.2024.109527","DOIUrl":null,"url":null,"abstract":"<p><p>Medical imaging has an crucial role in modern healthcare and helps diagnosing and treating for a variety of medical conditions. However, the quality of medical images can be affected by factors such as noise, artifacts, and limited resolution. This paper proposes a novel approach for enhancing the reconstruction of medical images by combining Genetic Algorithm (GA) with Incremental Principal Component Analysis (IPCA). The proposed method aims to improve image quality by extracting relevant features from the original image using GA, followed by reconstruction using IPCA. Through this comprehensive approach, the goal is to enhance the reconstruction of medical images and improve their diagnostic utility in clinical practice. To prove the validity of the proposed method, five different magnetic resonance (MR) images of the shoulder joints are used and the image quality are measured using the signal-to-noise ratio (SNR) terminology with peak signal-to-noise ratio (PSNR), a structural similarity index measure (SSIM) and contrast-to-noise ratio (CNR). The results demonstrate significant improvements in image quality, confirming the effectiveness of the proposed method in enhancing the reconstruction of medical images.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109527"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109527","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Medical imaging has an crucial role in modern healthcare and helps diagnosing and treating for a variety of medical conditions. However, the quality of medical images can be affected by factors such as noise, artifacts, and limited resolution. This paper proposes a novel approach for enhancing the reconstruction of medical images by combining Genetic Algorithm (GA) with Incremental Principal Component Analysis (IPCA). The proposed method aims to improve image quality by extracting relevant features from the original image using GA, followed by reconstruction using IPCA. Through this comprehensive approach, the goal is to enhance the reconstruction of medical images and improve their diagnostic utility in clinical practice. To prove the validity of the proposed method, five different magnetic resonance (MR) images of the shoulder joints are used and the image quality are measured using the signal-to-noise ratio (SNR) terminology with peak signal-to-noise ratio (PSNR), a structural similarity index measure (SSIM) and contrast-to-noise ratio (CNR). The results demonstrate significant improvements in image quality, confirming the effectiveness of the proposed method in enhancing the reconstruction of medical images.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信