A general analogy mass-spring system analytical model for sound reduction of side-branch resonators.

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
Jiaming Li, Bowen Huang, Hae Chang Gea
{"title":"A general analogy mass-spring system analytical model for sound reduction of side-branch resonators.","authors":"Jiaming Li, Bowen Huang, Hae Chang Gea","doi":"10.1121/10.0034633","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a general analytical model designed to predict the sound reduction frequency of side-branch resonators, regardless of their geometric shapes. Grounded in a continuous analogy mass-spring system, we conceptualize the air within the branch cavity of the resonator as a series of infinitesimal continuous air layers. Each air layer is represented as a mass-spring unit, influenced by the pressure distribution inside the branch cavity. These mass-spring units, following mass conservation principles, are systematically transformed into planar configurations and stacked in a singular direction. These stacked mass-spring units are then converted into an effective one-dimensional mass-spring. Standing wave and the conservation of energy are employed to determine the natural frequency of the effective one-dimensional mass-spring, which corresponds to the sound reduction frequency of the side-branch resonator. This analytical model offers precise predictions for the sound reduction frequencies of side-branch resonators, regardless of their geometric variations. The analytical model can help designers design side-branch resonators in various shapes that accurately target specific sound reduction frequencies in real-world applications. Our analytical model's predictions for sound reduction frequencies were benchmarked against simulations from COMSOL 5.4. The comparative analysis demonstrates the adaptability of the proposed analogy mass-spring system model to side-branch resonators of varied geometric designs. Furthermore, the model exhibits both high predictive accuracy and robustness. Further details and examples will be elaborated upon subsequently.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"4153-4168"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034633","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a general analytical model designed to predict the sound reduction frequency of side-branch resonators, regardless of their geometric shapes. Grounded in a continuous analogy mass-spring system, we conceptualize the air within the branch cavity of the resonator as a series of infinitesimal continuous air layers. Each air layer is represented as a mass-spring unit, influenced by the pressure distribution inside the branch cavity. These mass-spring units, following mass conservation principles, are systematically transformed into planar configurations and stacked in a singular direction. These stacked mass-spring units are then converted into an effective one-dimensional mass-spring. Standing wave and the conservation of energy are employed to determine the natural frequency of the effective one-dimensional mass-spring, which corresponds to the sound reduction frequency of the side-branch resonator. This analytical model offers precise predictions for the sound reduction frequencies of side-branch resonators, regardless of their geometric variations. The analytical model can help designers design side-branch resonators in various shapes that accurately target specific sound reduction frequencies in real-world applications. Our analytical model's predictions for sound reduction frequencies were benchmarked against simulations from COMSOL 5.4. The comparative analysis demonstrates the adaptability of the proposed analogy mass-spring system model to side-branch resonators of varied geometric designs. Furthermore, the model exhibits both high predictive accuracy and robustness. Further details and examples will be elaborated upon subsequently.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信