miR-184, a downregulated ovary-elevated miRNA transcriptionally activated by SREBF2, exerts anti-apoptotic properties in ovarian granulosa cells through inducing SMAD3 expression.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Baosen Shan, Yangan Huo, Zhennan Guo, Qiqi Li, Zengxiang Pan, Qifa Li, Xing Du
{"title":"miR-184, a downregulated ovary-elevated miRNA transcriptionally activated by SREBF2, exerts anti-apoptotic properties in ovarian granulosa cells through inducing SMAD3 expression.","authors":"Baosen Shan, Yangan Huo, Zhennan Guo, Qiqi Li, Zengxiang Pan, Qifa Li, Xing Du","doi":"10.1038/s41419-024-07286-1","DOIUrl":null,"url":null,"abstract":"<p><p>Follicular atresia is the primary threat to female fertility. miRNAs are dysregulated in granulosa cells (GCs) during follicular atresia, and have emerged as crucial regulators of the initiation and progression of follicular atresia. However, the downregulated ovary-elevated (OE) miRNAs and their biological functions in ovary remain elusive. Here, 13 downregulated OE miRNAs were systematically identified by integrating tissue expression high-throughput data and comparative transcriptome analyses, among which miR-184 was specifically highly expressed in ovary but dramatically downregulated during follicular atresia. Low miR-184 levels were also positively correlated with follicular atresia. Based on the in vitro GC and follicle culture system, we found that miR-184 suppressed GC apoptosis and follicular atresia. Mechanistically, miR-184 induced SMAD3 transcription by acting as a saRNA, and also stabilized SMAD3 mRNA by directly binding to its 5'-UTR, which promoted TGF-β pathway activity and its anti-apoptotic effect. In addition, miR-184 was transcribed independently of host gene, which was activated by SREBF2 in an H3K4me3-dependent manner. Comparative analysis revealed that SREBF2 expression and H3K4me3 enrichment on miR-184 promoter in GCs from atretic follicles were dramatically reduced, which leads to the downregulation of miR-184 during follicular atresia. Moreover, the expression pattern, function, target, and regulatory mechanism of miR-184 among mammals are highly conserved and universal. Taken together, our findings demonstrate that miR-184, transcriptionally activated by SREBF2 in an H3K4me3-dependent manner, exerts anti-atretic effects by inducing SMAD3 expression, highlighting that it is a promising regulator for improving follicular development, ovarian health and female fertility.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"892"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07286-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Follicular atresia is the primary threat to female fertility. miRNAs are dysregulated in granulosa cells (GCs) during follicular atresia, and have emerged as crucial regulators of the initiation and progression of follicular atresia. However, the downregulated ovary-elevated (OE) miRNAs and their biological functions in ovary remain elusive. Here, 13 downregulated OE miRNAs were systematically identified by integrating tissue expression high-throughput data and comparative transcriptome analyses, among which miR-184 was specifically highly expressed in ovary but dramatically downregulated during follicular atresia. Low miR-184 levels were also positively correlated with follicular atresia. Based on the in vitro GC and follicle culture system, we found that miR-184 suppressed GC apoptosis and follicular atresia. Mechanistically, miR-184 induced SMAD3 transcription by acting as a saRNA, and also stabilized SMAD3 mRNA by directly binding to its 5'-UTR, which promoted TGF-β pathway activity and its anti-apoptotic effect. In addition, miR-184 was transcribed independently of host gene, which was activated by SREBF2 in an H3K4me3-dependent manner. Comparative analysis revealed that SREBF2 expression and H3K4me3 enrichment on miR-184 promoter in GCs from atretic follicles were dramatically reduced, which leads to the downregulation of miR-184 during follicular atresia. Moreover, the expression pattern, function, target, and regulatory mechanism of miR-184 among mammals are highly conserved and universal. Taken together, our findings demonstrate that miR-184, transcriptionally activated by SREBF2 in an H3K4me3-dependent manner, exerts anti-atretic effects by inducing SMAD3 expression, highlighting that it is a promising regulator for improving follicular development, ovarian health and female fertility.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信