Metabolic shifts in lipid utilization and reciprocal interactions within the lung metastatic niche of triple-negative breast cancer revealed by spatial multi-omics.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Jung-Yu Kan, Hsiao-Chen Lee, Ming-Feng Hou, Hung-Pei Tsai, Shu-Fang Jian, Chao-Yuan Chang, Pei-Hsun Tsai, Yi-Shiuan Lin, Ying-Ming Tsai, Kuan-Li Wu, Yung-Chi Huang, Ya-Ling Hsu
{"title":"Metabolic shifts in lipid utilization and reciprocal interactions within the lung metastatic niche of triple-negative breast cancer revealed by spatial multi-omics.","authors":"Jung-Yu Kan, Hsiao-Chen Lee, Ming-Feng Hou, Hung-Pei Tsai, Shu-Fang Jian, Chao-Yuan Chang, Pei-Hsun Tsai, Yi-Shiuan Lin, Ying-Ming Tsai, Kuan-Li Wu, Yung-Chi Huang, Ya-Ling Hsu","doi":"10.1038/s41419-024-07205-4","DOIUrl":null,"url":null,"abstract":"<p><p>The Triple-Negative Breast Cancer (TNBC) subtype constitutes 15-20% of breast cancer cases and is associated with the poorest clinical outcomes. Distant metastasis, particularly to the lungs, is a major contributor to the high mortality rates in breast cancer patients. Despite this, there has been a lack of comprehensive insights into the heterogeneity of metastatic tumors and their surrounding ecosystem in the lungs. In this study, we utilized spatial RNA sequencing technology to investigate the heterogeneity of lung metastatic tumors and their microenvironment in two spontaneous lung metastatic mouse models. Our findings revealed an increase in metabolic-related genes within the cancer cells, with the hub gene Dlat (Dihydrolipoamide S-Acetyltransferase) showing a significant association with the development of lung metastatic tumors. Upregulation of Dlat led to the reprogramming of fatty acid utilization, markedly enhancing the bioenergetic capacity of cancer cells. This finding was corroborated by the increased dependence on fatty acid utilization in lung metastatic cancer cells, and inhibition of Dlat in breast cancer cells exhibited a reduced oxygen consumption rate. Consequently, inhibition of Dlat resulted in decreased survival capacity of breast cancer by reducing cancer stem cell properties and cell adhesion in the lung in vivo. The three cell components within the lung metastatic niche, including CD163<sup>+</sup> macrophages, neutrophils, and endothelial cells, expressed elevated levels of ApoE, leading to the secretion of various protumorigenic molecules that promote cancer cell growth in the lung. These molecules include galectin-1, S100A10, S100A4, and S100A6. Collectively, our findings highlight the lipid metabolism reprogramming of cancer and components of the tumor microenvironment that support lung metastasis of TNBC breast cancer.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"899"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07205-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Triple-Negative Breast Cancer (TNBC) subtype constitutes 15-20% of breast cancer cases and is associated with the poorest clinical outcomes. Distant metastasis, particularly to the lungs, is a major contributor to the high mortality rates in breast cancer patients. Despite this, there has been a lack of comprehensive insights into the heterogeneity of metastatic tumors and their surrounding ecosystem in the lungs. In this study, we utilized spatial RNA sequencing technology to investigate the heterogeneity of lung metastatic tumors and their microenvironment in two spontaneous lung metastatic mouse models. Our findings revealed an increase in metabolic-related genes within the cancer cells, with the hub gene Dlat (Dihydrolipoamide S-Acetyltransferase) showing a significant association with the development of lung metastatic tumors. Upregulation of Dlat led to the reprogramming of fatty acid utilization, markedly enhancing the bioenergetic capacity of cancer cells. This finding was corroborated by the increased dependence on fatty acid utilization in lung metastatic cancer cells, and inhibition of Dlat in breast cancer cells exhibited a reduced oxygen consumption rate. Consequently, inhibition of Dlat resulted in decreased survival capacity of breast cancer by reducing cancer stem cell properties and cell adhesion in the lung in vivo. The three cell components within the lung metastatic niche, including CD163+ macrophages, neutrophils, and endothelial cells, expressed elevated levels of ApoE, leading to the secretion of various protumorigenic molecules that promote cancer cell growth in the lung. These molecules include galectin-1, S100A10, S100A4, and S100A6. Collectively, our findings highlight the lipid metabolism reprogramming of cancer and components of the tumor microenvironment that support lung metastasis of TNBC breast cancer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信