LOC730101 improves ovarian cancer drug sensitivity by inhibiting autophagy-mediated DNA damage repair via BECN1.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Yancheng Zhong, Yang Shuai, Juan Yang, Mojian Zhang, Tiantian He, Leliang Zheng, Sheng Yang, Shuping Peng
{"title":"LOC730101 improves ovarian cancer drug sensitivity by inhibiting autophagy-mediated DNA damage repair via BECN1.","authors":"Yancheng Zhong, Yang Shuai, Juan Yang, Mojian Zhang, Tiantian He, Leliang Zheng, Sheng Yang, Shuping Peng","doi":"10.1038/s41419-024-07278-1","DOIUrl":null,"url":null,"abstract":"<p><p>Drug resistance and recurrence are still the bottlenecks in the clinical treatment of ovarian cancer (OC), seriously affecting patients' prognosis. Therefore, it is an urgent challenge for OC to be overcome towards precision therapy by studying the mechanism of OC drug resistance, finding new drug resistance targets and developing new effective treatment strategies. In this study, we found that lncRNA LOC730101 played an essential role in attenuating drug resistance in OC. LOC730101 was significantly down-regulated in platinum-resistant ovarian cancer tissues, and ectopic overexpression of LOC730101 substantially increased chemotherapy-induced apoptosis. Mechanistically, LOC730101 specifically binds to BECN1 and inhibits the formation of autophagosome BECN1/VPS34 by reducing phosphorylation of BECN1, thereby inhibiting autophagy and promoting drug sensitivity in ovarian cancer cells following treatment with cisplatin and PARP inhibitors. Moreover, LOC730101 inhibits the expression and activity of RNF168 via p62, which in turn affects H2A ubiquitination-mediated DNA damage repair and promotes drug sensitivity in ovarian cancer cells. Our findings demonstrated that LOC730101 played an important role in regulating the formation of the autophagic complex and that inhibition of autophagy significantly enhances the drug sensitivity of OC. And LOC730101 may be used as a prognostic marker to predict the sensitivity of OC to platinum and PARP inhibitors.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"893"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07278-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug resistance and recurrence are still the bottlenecks in the clinical treatment of ovarian cancer (OC), seriously affecting patients' prognosis. Therefore, it is an urgent challenge for OC to be overcome towards precision therapy by studying the mechanism of OC drug resistance, finding new drug resistance targets and developing new effective treatment strategies. In this study, we found that lncRNA LOC730101 played an essential role in attenuating drug resistance in OC. LOC730101 was significantly down-regulated in platinum-resistant ovarian cancer tissues, and ectopic overexpression of LOC730101 substantially increased chemotherapy-induced apoptosis. Mechanistically, LOC730101 specifically binds to BECN1 and inhibits the formation of autophagosome BECN1/VPS34 by reducing phosphorylation of BECN1, thereby inhibiting autophagy and promoting drug sensitivity in ovarian cancer cells following treatment with cisplatin and PARP inhibitors. Moreover, LOC730101 inhibits the expression and activity of RNF168 via p62, which in turn affects H2A ubiquitination-mediated DNA damage repair and promotes drug sensitivity in ovarian cancer cells. Our findings demonstrated that LOC730101 played an important role in regulating the formation of the autophagic complex and that inhibition of autophagy significantly enhances the drug sensitivity of OC. And LOC730101 may be used as a prognostic marker to predict the sensitivity of OC to platinum and PARP inhibitors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信