Anatoliy Shmygol, Gilles Bru-Mercier, Ahmed S Sultan, Frank C Howarth
{"title":"Distinct effects of obesity and diabetes on the action potential waveform and inward currents in rat ventricular myocytes.","authors":"Anatoliy Shmygol, Gilles Bru-Mercier, Ahmed S Sultan, Frank C Howarth","doi":"10.1042/CS20242144","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a significant global health challenge, increasing the risk of developing type 2 diabetes mellitus (T2DM) and cardiovascular disease. Research indicates that obese individuals, regardless of their diabetic status, have an increased risk of cardiovascular complications. Studies suggest that these patients experience impaired electrical conduction in the heart, although the underlying cause-whether due to obesity-induced fat toxicity or diabetes-related factors-remains uncertain. This study investigated ventricular action potential parameters, as well as sodium (INa) and calcium (ICa, L) currents, in Zucker fatty (ZF) rats and Zucker diabetic fatty (ZDF) rats, which serve as models for obesity and T2DM, respectively. Ventricular myocytes were isolated from 25- to 30-week-old Zucker rats. Resting and action potentials were recorded using a β-escin perforated patch clamp, while INa and ICa,L were assessed with whole-cell patch clamp methods. ZF rats exhibited higher excitability and faster upstroke velocity with greater INa density, whereas ZDF rats showed decreased INa and slower action potential upstroke. No differences in ICa,L density or voltage sensitivity were found among the groups. In summary, obesity, with or without accompanying T2DM, distinctly impacts the action potential waveform, INa density, and excitability of ventricular myocytes in this rat model of T2DM.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":" ","pages":"55-67"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20242144","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity is a significant global health challenge, increasing the risk of developing type 2 diabetes mellitus (T2DM) and cardiovascular disease. Research indicates that obese individuals, regardless of their diabetic status, have an increased risk of cardiovascular complications. Studies suggest that these patients experience impaired electrical conduction in the heart, although the underlying cause-whether due to obesity-induced fat toxicity or diabetes-related factors-remains uncertain. This study investigated ventricular action potential parameters, as well as sodium (INa) and calcium (ICa, L) currents, in Zucker fatty (ZF) rats and Zucker diabetic fatty (ZDF) rats, which serve as models for obesity and T2DM, respectively. Ventricular myocytes were isolated from 25- to 30-week-old Zucker rats. Resting and action potentials were recorded using a β-escin perforated patch clamp, while INa and ICa,L were assessed with whole-cell patch clamp methods. ZF rats exhibited higher excitability and faster upstroke velocity with greater INa density, whereas ZDF rats showed decreased INa and slower action potential upstroke. No differences in ICa,L density or voltage sensitivity were found among the groups. In summary, obesity, with or without accompanying T2DM, distinctly impacts the action potential waveform, INa density, and excitability of ventricular myocytes in this rat model of T2DM.
期刊介绍:
Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health.
Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively:
Cardiovascular system
Cerebrovascular system
Gastrointestinal tract and liver
Genomic medicine
Infection and immunity
Inflammation
Oncology
Metabolism
Endocrinology and nutrition
Nephrology
Circulation
Respiratory system
Vascular biology
Molecular pathology.