Maternal high-fat diet orchestrates offspring hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression.

IF 9.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ling Zhang, Wenyu Zou, Shixuan Zhang, Honghua Wu, Ying Gao, Junqing Zhang, Jia Zheng
{"title":"Maternal high-fat diet orchestrates offspring hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression.","authors":"Ling Zhang, Wenyu Zou, Shixuan Zhang, Honghua Wu, Ying Gao, Junqing Zhang, Jia Zheng","doi":"10.1186/s11658-024-00673-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Maternal overnutrition, prevalent among women of childbearing age, significantly impacts offspring health throughout their lifetime. While DNA methylation of metabolic-related genes mediates the transmission of detrimental effects from maternal high-fat diet (HFD), its role in programming hepatic cholesterol metabolism in offspring, particularly during weaning, remains elusive.</p><p><strong>Methods: </strong>Female C57BL/6 J mice were administered a HFD or control diet, before and during, gestation and lactation. Hepatic cholesterol metabolism genes in the liver of offspring were evaluated in terms of their expression. The potential regulator of cholesterol metabolism in the offspring's liver was identified, and the function of the targeted transcription factor was evaluated through in vitro experiments. The methylation level of the target transcription factor was assessed using the MassARRAY EpiTYPER platform. To determine whether transcription factor expression is influenced by DNA methylation, in vitro experiments were performed using 5-azacitidine and Lucia luciferase activity assays.</p><p><strong>Results: </strong>Here, we demonstrate that maternal HFD results in higher body weight and hypercholesterolemia in the offspring as early as weaning age. Maternal HFD feeding exacerbates hepatic cholesterol accumulation in offspring primarily by inhibiting cholesterol elimination to bile acids, with a significant decrease of hepatic cholesterol 7α-hydroxylase (CYP7A1). RNA-seq analysis identified myocyte enhancer factor 2A (MEF2A) as a key transcription factor in the offspring liver, which was significantly downregulated in offspring of HFD-fed dams. MEF2A knockdown led to CYP7A1 downregulation and lipid accumulation in HepG2 cells, while MEF2A overexpression reversed this effect. Dual luciferase reporter assays confirmed direct modulation of CYP7A1 transcription by MEF2A. Furthermore, the reduced MEF2A expression was attributed to DNA hypermethylation in the Mef2a promoter region. This epigenetic modification manifested as early as the fetal stage.</p><p><strong>Conclusions: </strong>This study provides novel insights into how maternal HFD orchestrates hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression in offspring at weaning.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"154"},"PeriodicalIF":9.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-024-00673-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Maternal overnutrition, prevalent among women of childbearing age, significantly impacts offspring health throughout their lifetime. While DNA methylation of metabolic-related genes mediates the transmission of detrimental effects from maternal high-fat diet (HFD), its role in programming hepatic cholesterol metabolism in offspring, particularly during weaning, remains elusive.

Methods: Female C57BL/6 J mice were administered a HFD or control diet, before and during, gestation and lactation. Hepatic cholesterol metabolism genes in the liver of offspring were evaluated in terms of their expression. The potential regulator of cholesterol metabolism in the offspring's liver was identified, and the function of the targeted transcription factor was evaluated through in vitro experiments. The methylation level of the target transcription factor was assessed using the MassARRAY EpiTYPER platform. To determine whether transcription factor expression is influenced by DNA methylation, in vitro experiments were performed using 5-azacitidine and Lucia luciferase activity assays.

Results: Here, we demonstrate that maternal HFD results in higher body weight and hypercholesterolemia in the offspring as early as weaning age. Maternal HFD feeding exacerbates hepatic cholesterol accumulation in offspring primarily by inhibiting cholesterol elimination to bile acids, with a significant decrease of hepatic cholesterol 7α-hydroxylase (CYP7A1). RNA-seq analysis identified myocyte enhancer factor 2A (MEF2A) as a key transcription factor in the offspring liver, which was significantly downregulated in offspring of HFD-fed dams. MEF2A knockdown led to CYP7A1 downregulation and lipid accumulation in HepG2 cells, while MEF2A overexpression reversed this effect. Dual luciferase reporter assays confirmed direct modulation of CYP7A1 transcription by MEF2A. Furthermore, the reduced MEF2A expression was attributed to DNA hypermethylation in the Mef2a promoter region. This epigenetic modification manifested as early as the fetal stage.

Conclusions: This study provides novel insights into how maternal HFD orchestrates hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression in offspring at weaning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular & Molecular Biology Letters
Cellular & Molecular Biology Letters 生物-生化与分子生物学
CiteScore
11.60
自引率
13.30%
发文量
101
审稿时长
3 months
期刊介绍: Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信