{"title":"Maternal high-fat diet orchestrates offspring hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression.","authors":"Ling Zhang, Wenyu Zou, Shixuan Zhang, Honghua Wu, Ying Gao, Junqing Zhang, Jia Zheng","doi":"10.1186/s11658-024-00673-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Maternal overnutrition, prevalent among women of childbearing age, significantly impacts offspring health throughout their lifetime. While DNA methylation of metabolic-related genes mediates the transmission of detrimental effects from maternal high-fat diet (HFD), its role in programming hepatic cholesterol metabolism in offspring, particularly during weaning, remains elusive.</p><p><strong>Methods: </strong>Female C57BL/6 J mice were administered a HFD or control diet, before and during, gestation and lactation. Hepatic cholesterol metabolism genes in the liver of offspring were evaluated in terms of their expression. The potential regulator of cholesterol metabolism in the offspring's liver was identified, and the function of the targeted transcription factor was evaluated through in vitro experiments. The methylation level of the target transcription factor was assessed using the MassARRAY EpiTYPER platform. To determine whether transcription factor expression is influenced by DNA methylation, in vitro experiments were performed using 5-azacitidine and Lucia luciferase activity assays.</p><p><strong>Results: </strong>Here, we demonstrate that maternal HFD results in higher body weight and hypercholesterolemia in the offspring as early as weaning age. Maternal HFD feeding exacerbates hepatic cholesterol accumulation in offspring primarily by inhibiting cholesterol elimination to bile acids, with a significant decrease of hepatic cholesterol 7α-hydroxylase (CYP7A1). RNA-seq analysis identified myocyte enhancer factor 2A (MEF2A) as a key transcription factor in the offspring liver, which was significantly downregulated in offspring of HFD-fed dams. MEF2A knockdown led to CYP7A1 downregulation and lipid accumulation in HepG2 cells, while MEF2A overexpression reversed this effect. Dual luciferase reporter assays confirmed direct modulation of CYP7A1 transcription by MEF2A. Furthermore, the reduced MEF2A expression was attributed to DNA hypermethylation in the Mef2a promoter region. This epigenetic modification manifested as early as the fetal stage.</p><p><strong>Conclusions: </strong>This study provides novel insights into how maternal HFD orchestrates hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression in offspring at weaning.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"154"},"PeriodicalIF":9.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-024-00673-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Maternal overnutrition, prevalent among women of childbearing age, significantly impacts offspring health throughout their lifetime. While DNA methylation of metabolic-related genes mediates the transmission of detrimental effects from maternal high-fat diet (HFD), its role in programming hepatic cholesterol metabolism in offspring, particularly during weaning, remains elusive.
Methods: Female C57BL/6 J mice were administered a HFD or control diet, before and during, gestation and lactation. Hepatic cholesterol metabolism genes in the liver of offspring were evaluated in terms of their expression. The potential regulator of cholesterol metabolism in the offspring's liver was identified, and the function of the targeted transcription factor was evaluated through in vitro experiments. The methylation level of the target transcription factor was assessed using the MassARRAY EpiTYPER platform. To determine whether transcription factor expression is influenced by DNA methylation, in vitro experiments were performed using 5-azacitidine and Lucia luciferase activity assays.
Results: Here, we demonstrate that maternal HFD results in higher body weight and hypercholesterolemia in the offspring as early as weaning age. Maternal HFD feeding exacerbates hepatic cholesterol accumulation in offspring primarily by inhibiting cholesterol elimination to bile acids, with a significant decrease of hepatic cholesterol 7α-hydroxylase (CYP7A1). RNA-seq analysis identified myocyte enhancer factor 2A (MEF2A) as a key transcription factor in the offspring liver, which was significantly downregulated in offspring of HFD-fed dams. MEF2A knockdown led to CYP7A1 downregulation and lipid accumulation in HepG2 cells, while MEF2A overexpression reversed this effect. Dual luciferase reporter assays confirmed direct modulation of CYP7A1 transcription by MEF2A. Furthermore, the reduced MEF2A expression was attributed to DNA hypermethylation in the Mef2a promoter region. This epigenetic modification manifested as early as the fetal stage.
Conclusions: This study provides novel insights into how maternal HFD orchestrates hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression in offspring at weaning.
期刊介绍:
Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.