Targeting ERBB3 and AKT to overcome adaptive resistance in EML4-ALK-driven non-small cell lung cancer.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Josephina Sampson, Hyun-Min Ju, Nan Zhang, Sharon Yeoh, Jene Choi, Richard Bayliss
{"title":"Targeting ERBB3 and AKT to overcome adaptive resistance in EML4-ALK-driven non-small cell lung cancer.","authors":"Josephina Sampson, Hyun-Min Ju, Nan Zhang, Sharon Yeoh, Jene Choi, Richard Bayliss","doi":"10.1038/s41419-024-07272-7","DOIUrl":null,"url":null,"abstract":"<p><p>The fusion event between EML4 and ALK drives a significant oncogenic activity in 5% of non-small cell lung cancer (NSCLC). Even though potent ALK-tyrosine kinase inhibitors (ALK-TKIs) are successfully used for the treatment of EML4-ALK-positive NSCLC patients, a subset of those patients eventually acquire resistance during their therapy. Here, we investigate the kinase responses in EML4-ALK V1 and V3-harbouring NSCLC cancer cells after acute inhibition with ALK TKI, lorlatinib (LOR). Using phosphopeptide chip array and upstream kinase prediction analysis, we identified a group of phosphorylated tyrosine peptides including ERBB and AKT proteins that are upregulated upon ALK-TKI treatment in EML4-ALK-positive NSCLC cell lines. Dual inhibition of ALK and ERBB receptors or AKT disrupts RAS/MAPK and AKT/PI3K signalling pathways, and enhances apoptosis in EML4-ALK + NSCLC cancer cells. Heregulin, an ERBB3 ligand, differentially modulates the sensitivity of EML4-ALK cell lines to ALK inhibitors. We found that EML4-ALK cells made resistant to LOR are sensitive to inhibition of ERBB and AKT. These findings emphasize the important roles of AKT and ERBB3 to regulate signalling after acute LOR treatment, identifying them as potential targets that may be beneficial to prevent adaptive resistance to EML4-ALK-targeted therapies in NSCLC.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"912"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07272-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fusion event between EML4 and ALK drives a significant oncogenic activity in 5% of non-small cell lung cancer (NSCLC). Even though potent ALK-tyrosine kinase inhibitors (ALK-TKIs) are successfully used for the treatment of EML4-ALK-positive NSCLC patients, a subset of those patients eventually acquire resistance during their therapy. Here, we investigate the kinase responses in EML4-ALK V1 and V3-harbouring NSCLC cancer cells after acute inhibition with ALK TKI, lorlatinib (LOR). Using phosphopeptide chip array and upstream kinase prediction analysis, we identified a group of phosphorylated tyrosine peptides including ERBB and AKT proteins that are upregulated upon ALK-TKI treatment in EML4-ALK-positive NSCLC cell lines. Dual inhibition of ALK and ERBB receptors or AKT disrupts RAS/MAPK and AKT/PI3K signalling pathways, and enhances apoptosis in EML4-ALK + NSCLC cancer cells. Heregulin, an ERBB3 ligand, differentially modulates the sensitivity of EML4-ALK cell lines to ALK inhibitors. We found that EML4-ALK cells made resistant to LOR are sensitive to inhibition of ERBB and AKT. These findings emphasize the important roles of AKT and ERBB3 to regulate signalling after acute LOR treatment, identifying them as potential targets that may be beneficial to prevent adaptive resistance to EML4-ALK-targeted therapies in NSCLC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信