Jon Bohlin, Siri E Håberg, Per Magnus, Håkon K Gjessing
{"title":"MinLinMo: a minimalist approach to variable selection and linear model prediction.","authors":"Jon Bohlin, Siri E Håberg, Per Magnus, Håkon K Gjessing","doi":"10.1186/s12859-024-06000-4","DOIUrl":null,"url":null,"abstract":"<p><p>Generating prediction models from high dimensional data often result in large models with many predictors. Causal inference for such models can therefore be difficult or even impossible in practice. The stand-alone software package MinLinMo emphasizes small linear prediction models over highest possible predictability with a particular focus on including variables correlated with the outcome, minimal memory usage and speed. MinLinMo is demonstrated on large epigenetic datasets with prediction models for chronological age, gestational age, and birth weight comprising, respectively, 15, 14 and 10 predictors. The parsimonious MinLinMo models perform comparably to established prediction models requiring hundreds of predictors.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"380"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06000-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Generating prediction models from high dimensional data often result in large models with many predictors. Causal inference for such models can therefore be difficult or even impossible in practice. The stand-alone software package MinLinMo emphasizes small linear prediction models over highest possible predictability with a particular focus on including variables correlated with the outcome, minimal memory usage and speed. MinLinMo is demonstrated on large epigenetic datasets with prediction models for chronological age, gestational age, and birth weight comprising, respectively, 15, 14 and 10 predictors. The parsimonious MinLinMo models perform comparably to established prediction models requiring hundreds of predictors.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.