Loop-mediated isothermal amplification assays for the detection of antimicrobial resistance elements in Vibrio cholera.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Daniel Antonio Negrón, Shipra Trivedi, Nicholas Tolli, David Ashford, Gabrielle Melton, Stephanie Guertin, Katharine Jennings, Bryan D Necciai, Shanmuga Sozhamannan, Bradley W Abramson
{"title":"Loop-mediated isothermal amplification assays for the detection of antimicrobial resistance elements in Vibrio cholera.","authors":"Daniel Antonio Negrón, Shipra Trivedi, Nicholas Tolli, David Ashford, Gabrielle Melton, Stephanie Guertin, Katharine Jennings, Bryan D Necciai, Shanmuga Sozhamannan, Bradley W Abramson","doi":"10.1186/s12859-024-06001-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The bacterium Vibrio cholerae causes diarrheal illness and can acquire genetic material leading to multiple drug resistance (MDR). Rapid detection of resistance-conferring mobile genetic elements helps avoid the prescription of ineffective antibiotics for specific strains. Colorimetric loop-mediated isothermal amplification (LAMP) assays provide a rapid and cost-effective means for detection at point-of-care since they do not require specialized equipment, require limited expertise to perform, and can take less than 30 min to perform in resource limited regions. LAMP output is a color change that can be viewed by eye, but it can be difficult to design primer sets, determine target specificity, and interpret subjective color changes.</p><p><strong>Methods: </strong>We developed an algorithm for the in silico design and evaluation of LAMP assays within the open-source PCR Signature Erosion Tool (PSET) and a computer vision application for the quantitative analysis of colorimetric outputs. First, Primer3 calculates LAMP primer sequence candidates with settings based on GC-content optimization. Next, PSET aligns the primer sequences of each assay against large sequence databases to calculate sufficient sequence similarity, coverage, and primer arrangement to the intended taxa, ultimately generating a confusion matrix. Finally, we tested assay candidates in the laboratory against synthetic constructs.</p><p><strong>Results: </strong>As an example, we generated new LAMP assays targeting drug resistance in V. cholerae and evaluated existing ones from the literature based on in silico target specificity and in vitro testing. Improvements in the design and testing of LAMP assays, with heightened target specificity and a simple analysis platform, increase utility for in-field applications. Overall, 9 of the 16 tested LAMP assays had positive signal through visual and computer vision-based detection methods developed here. Here we show LAMP assays tested on synthetic AMR gene targets for aph(6), varG, floR, qnrVC5, and almG, which allow for resistance to aminoglycosides, penicillins, carbapenems, phenicols, fluoroquinolones, and polymyxins respectively.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"384"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06001-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The bacterium Vibrio cholerae causes diarrheal illness and can acquire genetic material leading to multiple drug resistance (MDR). Rapid detection of resistance-conferring mobile genetic elements helps avoid the prescription of ineffective antibiotics for specific strains. Colorimetric loop-mediated isothermal amplification (LAMP) assays provide a rapid and cost-effective means for detection at point-of-care since they do not require specialized equipment, require limited expertise to perform, and can take less than 30 min to perform in resource limited regions. LAMP output is a color change that can be viewed by eye, but it can be difficult to design primer sets, determine target specificity, and interpret subjective color changes.

Methods: We developed an algorithm for the in silico design and evaluation of LAMP assays within the open-source PCR Signature Erosion Tool (PSET) and a computer vision application for the quantitative analysis of colorimetric outputs. First, Primer3 calculates LAMP primer sequence candidates with settings based on GC-content optimization. Next, PSET aligns the primer sequences of each assay against large sequence databases to calculate sufficient sequence similarity, coverage, and primer arrangement to the intended taxa, ultimately generating a confusion matrix. Finally, we tested assay candidates in the laboratory against synthetic constructs.

Results: As an example, we generated new LAMP assays targeting drug resistance in V. cholerae and evaluated existing ones from the literature based on in silico target specificity and in vitro testing. Improvements in the design and testing of LAMP assays, with heightened target specificity and a simple analysis platform, increase utility for in-field applications. Overall, 9 of the 16 tested LAMP assays had positive signal through visual and computer vision-based detection methods developed here. Here we show LAMP assays tested on synthetic AMR gene targets for aph(6), varG, floR, qnrVC5, and almG, which allow for resistance to aminoglycosides, penicillins, carbapenems, phenicols, fluoroquinolones, and polymyxins respectively.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信