Informeasure: an R/bioconductor package for quantifying nonlinear dependence between variables in biological networks from an information theory perspective.
{"title":"Informeasure: an R/bioconductor package for quantifying nonlinear dependence between variables in biological networks from an information theory perspective.","authors":"Chu Pan, Yanlin Chen","doi":"10.1186/s12859-024-05996-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Using information measures to infer biological regulatory networks can capture nonlinear relationships between variables. However, it is computationally challenging, and there is a lack of convenient tools.</p><p><strong>Results: </strong>We introduce Informeasure, an R package designed to quantify nonlinear dependencies in biological regulatory networks from an information theory perspective. This package compiles a comprehensive set of information measurements, including mutual information, conditional mutual information, interaction information, partial information decomposition, and part mutual information. Mutual information is used for bivariate network inference, while the other four estimators are dedicated to trivariate network analysis.</p><p><strong>Conclusions: </strong>Informeasure is a turnkey solution, allowing users to utilize these information measures immediately upon installation. Informeasure is available as an R/Bioconductor package at https://bioconductor.org/packages/Informeasure .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"382"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05996-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Using information measures to infer biological regulatory networks can capture nonlinear relationships between variables. However, it is computationally challenging, and there is a lack of convenient tools.
Results: We introduce Informeasure, an R package designed to quantify nonlinear dependencies in biological regulatory networks from an information theory perspective. This package compiles a comprehensive set of information measurements, including mutual information, conditional mutual information, interaction information, partial information decomposition, and part mutual information. Mutual information is used for bivariate network inference, while the other four estimators are dedicated to trivariate network analysis.
Conclusions: Informeasure is a turnkey solution, allowing users to utilize these information measures immediately upon installation. Informeasure is available as an R/Bioconductor package at https://bioconductor.org/packages/Informeasure .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.