The nitrogenase mechanism: new roles for the dangler?

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rebeccah A Warmack, Douglas C Rees
{"title":"The nitrogenase mechanism: new roles for the dangler?","authors":"Rebeccah A Warmack, Douglas C Rees","doi":"10.1007/s00775-024-02085-7","DOIUrl":null,"url":null,"abstract":"<p><p>Dangler sites protruding from a core metallocluster were introduced into the bioinorganic lexicon in 2000 by R.D. Britt and co-workers in an analysis of the tetramanganese oxygen-evolving cluster in photosystem II. In this perspective, we consider whether analogous dangler sites could participate in the mechanism of dinitrogen reduction by nitrogenase. Two possible roles for dynamic danglers in the active site FeMo cofactor are highlighted that might occur transiently during turnover. The first role for a dangler involves the S2B belt sulfur associated with displacement by carbon monoxide and other ligands, while the second dangler role could involve the entire cluster upon displacement of the His-  <math><mi>α</mi></math>  442 side chain to the molybdenum by a free carboxyl group of the homocitrate ligand. To assess whether waters might be able to interact with the cofactor, a survey of small ligands (water and alkali metal ions) contacting [4Fe4S] clusters in synthetic compounds and proteins was conducted. This survey reveals a preference for these sites to pack over the centers of 2Fe2S rhombs. Waters are excluded from the S2B site in the resting state of nitrogenase, suggesting it is unlikely that water molecules coordinate to the FeMo cofactor during catalysis. While alkali metal ions are found to generally influence the properties of catalysts for dinitrogen reduction, no convincing evidence was found that any of the waters near the FeMo cofactor could instead be sodium or potassium ions. Dangler sites, if they exist in the nitrogenase mechanism, are likely formed transiently by localized changes to the resting-state FeMo cofactor structure.</p>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JBIC Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s00775-024-02085-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dangler sites protruding from a core metallocluster were introduced into the bioinorganic lexicon in 2000 by R.D. Britt and co-workers in an analysis of the tetramanganese oxygen-evolving cluster in photosystem II. In this perspective, we consider whether analogous dangler sites could participate in the mechanism of dinitrogen reduction by nitrogenase. Two possible roles for dynamic danglers in the active site FeMo cofactor are highlighted that might occur transiently during turnover. The first role for a dangler involves the S2B belt sulfur associated with displacement by carbon monoxide and other ligands, while the second dangler role could involve the entire cluster upon displacement of the His-  α  442 side chain to the molybdenum by a free carboxyl group of the homocitrate ligand. To assess whether waters might be able to interact with the cofactor, a survey of small ligands (water and alkali metal ions) contacting [4Fe4S] clusters in synthetic compounds and proteins was conducted. This survey reveals a preference for these sites to pack over the centers of 2Fe2S rhombs. Waters are excluded from the S2B site in the resting state of nitrogenase, suggesting it is unlikely that water molecules coordinate to the FeMo cofactor during catalysis. While alkali metal ions are found to generally influence the properties of catalysts for dinitrogen reduction, no convincing evidence was found that any of the waters near the FeMo cofactor could instead be sodium or potassium ions. Dangler sites, if they exist in the nitrogenase mechanism, are likely formed transiently by localized changes to the resting-state FeMo cofactor structure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JBIC Journal of Biological Inorganic Chemistry
JBIC Journal of Biological Inorganic Chemistry 化学-生化与分子生物学
CiteScore
5.90
自引率
3.30%
发文量
49
审稿时长
3 months
期刊介绍: Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信