Jianguo Zheng, Aijing Zhang, Qinglong Du, Chi Li, Zhongwei Zhao, Luchao Li, Zhao Zhang, Xin Qin, Yi Li, Kang-Nan Wang, Nengwang Yu
{"title":"Synergistic photoinduction of ferroptosis and apoptosis by a mitochondria-targeted iridium complex for bladder cancer therapy.","authors":"Jianguo Zheng, Aijing Zhang, Qinglong Du, Chi Li, Zhongwei Zhao, Luchao Li, Zhao Zhang, Xin Qin, Yi Li, Kang-Nan Wang, Nengwang Yu","doi":"10.1016/j.jcis.2024.12.073","DOIUrl":null,"url":null,"abstract":"<p><p>Bladder cancer (BC) is one of the most common malignant tumors of the urinary system, and has a high recurrence rate and treatment resistance. Recent results indicate that mitochondrial metabolism influences the therapeutic outcomes of BC. Mitochondria-targeted photosensitizer (PS) is a promising anticancer therapeutic approach that may overcome the limitations of conventional BC treatments. Herein, two mitochondria-targeted iridium(III) PSs, Ir-Mito1 and Ir-Mito2, have been designed for BC treatment. Mechanically, Ir-Mito2 induced a decrease in mitochondrial membrane potential via white light activation, further triggering a reduction of the B-cell lymphoma 2 protein (Bcl-2)/Bcl-associated X protein (Bax) ratio and increment of cleaved caspase3. Meanwhile, the reduction of glutathione, deactivation of glutathione peroxidase 4 (GPX4), increase of acyl-CoA synthetase long chain family member 4 (ACSL4), and accumulation of lipid peroxide resulted in synergistically activating of ferroptosis and apoptosis. The results demonstrated that Ir-Mito2 exhibited excellent antitumor efficacy with superior biosafety in vivo. This work on light-activated and mitochondrial-targeted PS provides an innovative therapeutic platform for BC.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"420-431"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.073","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bladder cancer (BC) is one of the most common malignant tumors of the urinary system, and has a high recurrence rate and treatment resistance. Recent results indicate that mitochondrial metabolism influences the therapeutic outcomes of BC. Mitochondria-targeted photosensitizer (PS) is a promising anticancer therapeutic approach that may overcome the limitations of conventional BC treatments. Herein, two mitochondria-targeted iridium(III) PSs, Ir-Mito1 and Ir-Mito2, have been designed for BC treatment. Mechanically, Ir-Mito2 induced a decrease in mitochondrial membrane potential via white light activation, further triggering a reduction of the B-cell lymphoma 2 protein (Bcl-2)/Bcl-associated X protein (Bax) ratio and increment of cleaved caspase3. Meanwhile, the reduction of glutathione, deactivation of glutathione peroxidase 4 (GPX4), increase of acyl-CoA synthetase long chain family member 4 (ACSL4), and accumulation of lipid peroxide resulted in synergistically activating of ferroptosis and apoptosis. The results demonstrated that Ir-Mito2 exhibited excellent antitumor efficacy with superior biosafety in vivo. This work on light-activated and mitochondrial-targeted PS provides an innovative therapeutic platform for BC.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies