Beyond peptides: Unveiling the design strategies, structure activity correlations and protein-ligand interactions of small molecule inhibitors against PD-1/PD-L1.
Pujan Sasmal, P Prabitha, B R Prashantha Kumar, B R Swetha, Sajeev Kumar Babasahib, Nulgumnalli Manjunathaiah Raghavendra
{"title":"Beyond peptides: Unveiling the design strategies, structure activity correlations and protein-ligand interactions of small molecule inhibitors against PD-1/PD-L1.","authors":"Pujan Sasmal, P Prabitha, B R Prashantha Kumar, B R Swetha, Sajeev Kumar Babasahib, Nulgumnalli Manjunathaiah Raghavendra","doi":"10.1016/j.bioorg.2024.108036","DOIUrl":null,"url":null,"abstract":"<p><p>The landscape of cancer treatment has been transformed by the emergence of immunotherapy, especially through the use of antibodies that target the PD-1/PD-L1 pathway. Recently, there has been a notable increase in interest surrounding immune checkpoint inhibitors for cancer therapy. While antibody-based approaches have drawbacks like high costs and prolonged activity, the approval of monoclonal antibodies such as pembrolizumab and nivolumab has paved the way for a range of alternative therapies, including peptides, peptidomimetics, and small-molecule inhibitors. These smaller molecules, which target the PD-1/PD-L1 interaction, are seen as potential substitutes or supplements to monoclonal antibodies. Our focus in this article is primarily on exploring small molecules designed for PD-1/PD-L1 checkpoint pathway modulation in cancer immunotherapy, along with highlighting current advances in their structural and preclinical/clinical development. The pursuit of therapeutics based on small-molecule inhibitors of the PD-1/PD-L1 axis offers a promising yet intricate avenue for advancing cancer treatment.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"154 ","pages":"108036"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.108036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The landscape of cancer treatment has been transformed by the emergence of immunotherapy, especially through the use of antibodies that target the PD-1/PD-L1 pathway. Recently, there has been a notable increase in interest surrounding immune checkpoint inhibitors for cancer therapy. While antibody-based approaches have drawbacks like high costs and prolonged activity, the approval of monoclonal antibodies such as pembrolizumab and nivolumab has paved the way for a range of alternative therapies, including peptides, peptidomimetics, and small-molecule inhibitors. These smaller molecules, which target the PD-1/PD-L1 interaction, are seen as potential substitutes or supplements to monoclonal antibodies. Our focus in this article is primarily on exploring small molecules designed for PD-1/PD-L1 checkpoint pathway modulation in cancer immunotherapy, along with highlighting current advances in their structural and preclinical/clinical development. The pursuit of therapeutics based on small-molecule inhibitors of the PD-1/PD-L1 axis offers a promising yet intricate avenue for advancing cancer treatment.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.