Synthesis of dolutegravir derivatives modified by 1,2,3-triazole structure and their anti-inflammatory activity in LPS-induced BV2 cells.

IF 2.5 4区 医学 Q3 CHEMISTRY, MEDICINAL
Xixi Hou, Longfei Mao, Xuanwei Zhang, Xi Wang, Lan Wang, Jianji Wang
{"title":"Synthesis of dolutegravir derivatives modified by 1,2,3-triazole structure and their anti-inflammatory activity in LPS-induced BV2 cells.","authors":"Xixi Hou, Longfei Mao, Xuanwei Zhang, Xi Wang, Lan Wang, Jianji Wang","doi":"10.1016/j.bmcl.2024.130076","DOIUrl":null,"url":null,"abstract":"<p><p>Given the promising anti-inflammatory activity of the HIV integrase inhibitor dolutegravir and the widespread use of the 1,2,3-triazole structure in anti-inflammatory drug development, this study aimed to enhance dolutegravir's efficacy by introducing a 1,2,3-triazole group. As a result, four series of dolutegravir derivatives were synthesized. Screening these derivatives for anti-inflammatory activity in microglial cells revealed that compound 6k demonstrated the most potent anti-inflammatory effect without significant cytotoxicity. Specifically, 6k significantly reduced the transcription levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Additionally, 6k decreased the LPS-induced overproduction of inflammatory mediators such as nitric oxide (NO), IL-6, and TNF-α. Further investigation into the upstream inflammatory enzymes iNOS and COX-2 showed that 6k markedly reduced their transcription and protein levels. To elucidate the mechanism underlying the anti-inflammatory effects of dolutegravir derivatives, it was found that compound 6k modulates microglial inflammation by inhibiting the phosphorylation and nuclear translocation of signal transducer and activator of transcription 1/3 (STAT1/3). Moreover, acute toxicity testing in mice indicated that compound 6k exhibited low toxicity, suggesting its potential as a lead compound for the treatment of neuroinflammation.</p>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":" ","pages":"130076"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bmcl.2024.130076","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Given the promising anti-inflammatory activity of the HIV integrase inhibitor dolutegravir and the widespread use of the 1,2,3-triazole structure in anti-inflammatory drug development, this study aimed to enhance dolutegravir's efficacy by introducing a 1,2,3-triazole group. As a result, four series of dolutegravir derivatives were synthesized. Screening these derivatives for anti-inflammatory activity in microglial cells revealed that compound 6k demonstrated the most potent anti-inflammatory effect without significant cytotoxicity. Specifically, 6k significantly reduced the transcription levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Additionally, 6k decreased the LPS-induced overproduction of inflammatory mediators such as nitric oxide (NO), IL-6, and TNF-α. Further investigation into the upstream inflammatory enzymes iNOS and COX-2 showed that 6k markedly reduced their transcription and protein levels. To elucidate the mechanism underlying the anti-inflammatory effects of dolutegravir derivatives, it was found that compound 6k modulates microglial inflammation by inhibiting the phosphorylation and nuclear translocation of signal transducer and activator of transcription 1/3 (STAT1/3). Moreover, acute toxicity testing in mice indicated that compound 6k exhibited low toxicity, suggesting its potential as a lead compound for the treatment of neuroinflammation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
3.70%
发文量
463
审稿时长
27 days
期刊介绍: Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信