Impact of Intracellular Proteins on μ-Opioid Receptor Structure and Ligand Binding.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Caitlin E Scott, Leah A Juechter, Josephine Rocha, Lauren D Jones, Brenna Outten, Taylor D Aishman, Alaina R Ivers, George C Shields
{"title":"Impact of Intracellular Proteins on μ-Opioid Receptor Structure and Ligand Binding.","authors":"Caitlin E Scott, Leah A Juechter, Josephine Rocha, Lauren D Jones, Brenna Outten, Taylor D Aishman, Alaina R Ivers, George C Shields","doi":"10.1021/acs.jpcb.4c05214","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic pain is a prevalent problem affecting approximately one out of every five adults in the U.S. The most effective way to treat chronic pain is with opioids, but they cause dangerous side effects such as tolerance, addiction, and respiratory depression, which makes them quite deadly. Opioids, such as fentanyl, target the μ-opioid receptor (MOR), which can then bind to the intracellular G<sub>i</sub> protein or the β-arrestin protein. The G<sub>i</sub> pathway is primarily responsible for pain relief and potential side effects, but the β-arrestin pathway is chiefly responsible for the unwanted side effects. Ideally, an effective pain medication without side effects would bind to MOR, which would bias signaling solely through the G<sub>i</sub> pathway. We used the Bio3D library to conduct principal component analysis to compare the cryo-electron microscopy MOR structures in complex with the G<sub>i</sub> versus an X-ray crystallography MOR structure with a nanobody acting as a G<sub>i</sub> mimic. Our results agree with a previous study by Munro, which concluded that nanobody-bound MOR is structurally different than G<sub>i</sub>-bound MOR. Furthermore, we investigated the structural diversity of opioids that can bind to MOR. Quantum mechanical calculations show that the low energy solution structures of fentanyl differ from the one bound to MOR in the experimental structure, and p<i>K</i><sub>a</sub> calculations reveal that fentanyl is protonated in aqueous solution. Glide docking studies show that higher energy structures of fentanyl in solution form favorable docking complexes with MOR. Our calculations show the relative abundance of each fentanyl conformation in solution as well as the energetic barriers that need to be overcome to bind to MOR. Docking studies confirm that multiple fentanyl conformations can bind to the receptor. Perhaps a variety of conformations of fentanyl can stabilize multiple conformations of the MOR, which can explain why fentanyl can induce different intracellular signaling and multiple physiological effects.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c05214","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic pain is a prevalent problem affecting approximately one out of every five adults in the U.S. The most effective way to treat chronic pain is with opioids, but they cause dangerous side effects such as tolerance, addiction, and respiratory depression, which makes them quite deadly. Opioids, such as fentanyl, target the μ-opioid receptor (MOR), which can then bind to the intracellular Gi protein or the β-arrestin protein. The Gi pathway is primarily responsible for pain relief and potential side effects, but the β-arrestin pathway is chiefly responsible for the unwanted side effects. Ideally, an effective pain medication without side effects would bind to MOR, which would bias signaling solely through the Gi pathway. We used the Bio3D library to conduct principal component analysis to compare the cryo-electron microscopy MOR structures in complex with the Gi versus an X-ray crystallography MOR structure with a nanobody acting as a Gi mimic. Our results agree with a previous study by Munro, which concluded that nanobody-bound MOR is structurally different than Gi-bound MOR. Furthermore, we investigated the structural diversity of opioids that can bind to MOR. Quantum mechanical calculations show that the low energy solution structures of fentanyl differ from the one bound to MOR in the experimental structure, and pKa calculations reveal that fentanyl is protonated in aqueous solution. Glide docking studies show that higher energy structures of fentanyl in solution form favorable docking complexes with MOR. Our calculations show the relative abundance of each fentanyl conformation in solution as well as the energetic barriers that need to be overcome to bind to MOR. Docking studies confirm that multiple fentanyl conformations can bind to the receptor. Perhaps a variety of conformations of fentanyl can stabilize multiple conformations of the MOR, which can explain why fentanyl can induce different intracellular signaling and multiple physiological effects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信