Lei Geng, Yue Feng, Yaxi Niu, Fang Zhang, Huaqing Yin
{"title":"MGT: Machine Learning Accelerates Performance Prediction of Alloy Catalytic Materials.","authors":"Lei Geng, Yue Feng, Yaxi Niu, Fang Zhang, Huaqing Yin","doi":"10.1021/acs.jcim.4c01065","DOIUrl":null,"url":null,"abstract":"<p><p>The application of deep learning technology in the field of materials science provides a new method for predicting the adsorption energy of high-performance alloy catalysts in hydrogen evolution reactions and material discovery. The activity and selectivity of catalytic materials are mainly influenced by the properties and positions of active sites and adsorption sites. However, current deep learning models have not sufficiently focused on the importance of active atoms and adsorbates, instead placing more emphasis on the overall structure of the catalytic materials. In this paper, the overall molecular graph and a masked graph, which ignores fixed atoms, are separately input into the Masked Graph Transformer (MGT) network to enhance the model's ability to recognize key sites in catalytic reactions. Second, we introduce a nonlinear message-passing mechanism to improve the dot-product attention in the Transformer and capture the directional information on the relative positions of nodes by integrating molecular geometric information through deep tensor products. Subsequently, we constructed the NLMP-TransNet framework, which combines MPNN and Transformer and optimizes the model's learning and prediction capabilities through weight sharing and residual connections. The MGT achieves an error rate of 0.5447 eV on the small data set OC20-Ni, surpassing existing technologies. Ablation studies confirm the necessity of focusing on site features for accurate adsorption energy prediction. Code is available at https://github.com/KristinSun/OCP-MGT.git.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01065","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The application of deep learning technology in the field of materials science provides a new method for predicting the adsorption energy of high-performance alloy catalysts in hydrogen evolution reactions and material discovery. The activity and selectivity of catalytic materials are mainly influenced by the properties and positions of active sites and adsorption sites. However, current deep learning models have not sufficiently focused on the importance of active atoms and adsorbates, instead placing more emphasis on the overall structure of the catalytic materials. In this paper, the overall molecular graph and a masked graph, which ignores fixed atoms, are separately input into the Masked Graph Transformer (MGT) network to enhance the model's ability to recognize key sites in catalytic reactions. Second, we introduce a nonlinear message-passing mechanism to improve the dot-product attention in the Transformer and capture the directional information on the relative positions of nodes by integrating molecular geometric information through deep tensor products. Subsequently, we constructed the NLMP-TransNet framework, which combines MPNN and Transformer and optimizes the model's learning and prediction capabilities through weight sharing and residual connections. The MGT achieves an error rate of 0.5447 eV on the small data set OC20-Ni, surpassing existing technologies. Ablation studies confirm the necessity of focusing on site features for accurate adsorption energy prediction. Code is available at https://github.com/KristinSun/OCP-MGT.git.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.