How Are the Properties of Starch-Based Composites Influenced by the Chemical Treatment of BSG?

Q3 Materials Science
Georgia W. Ramos, Ana B. Klosowski, Aline C. Lopes, Giovani A. Carvalho, Juliana B. Olivato
{"title":"How Are the Properties of Starch-Based Composites Influenced by the Chemical Treatment of BSG?","authors":"Georgia W. Ramos,&nbsp;Ana B. Klosowski,&nbsp;Aline C. Lopes,&nbsp;Giovani A. Carvalho,&nbsp;Juliana B. Olivato","doi":"10.1002/masy.202400081","DOIUrl":null,"url":null,"abstract":"<p>Lignocellulosic fibers from Brewer's spent grain (BSG) represent an ecologically and economically favorable alternative that can act as reinforcing agents for starch-based polymer composites. Biodegradable composites are produced using cassava starch and BSG of the Pilsen (P) and Weiss (W) types, which are subjected to mercerization (BSM), bleaching (BSP) and a combination of those treatments (BSB). By including treated BSGs, homogeneous matrices with starch are produced, without the presence of pores and/or cracks, as evidenced by the scanning electron microscopy (SEM) images. The tensile strength of the composites is improved by up to 80% and Young's modulus by up to 50% with the addition of BSB(P) and BSB(W) fibers, indicating the role of the materials as reinforcement agents. Bleaching and mercerization treatments are efficient in the exposition of hydroxyl groups of cellulose, resulting in higher hydrophilicity and water vapor permeability (WVP) of the composites containing the BSP and BSM fibers. Biodegradable composites incorporating BSG from the brewing industry have promising properties and can be a viable alternative to non-biodegradable polymeric packaging.</p>","PeriodicalId":18107,"journal":{"name":"Macromolecular Symposia","volume":"413 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Symposia","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/masy.202400081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Lignocellulosic fibers from Brewer's spent grain (BSG) represent an ecologically and economically favorable alternative that can act as reinforcing agents for starch-based polymer composites. Biodegradable composites are produced using cassava starch and BSG of the Pilsen (P) and Weiss (W) types, which are subjected to mercerization (BSM), bleaching (BSP) and a combination of those treatments (BSB). By including treated BSGs, homogeneous matrices with starch are produced, without the presence of pores and/or cracks, as evidenced by the scanning electron microscopy (SEM) images. The tensile strength of the composites is improved by up to 80% and Young's modulus by up to 50% with the addition of BSB(P) and BSB(W) fibers, indicating the role of the materials as reinforcement agents. Bleaching and mercerization treatments are efficient in the exposition of hydroxyl groups of cellulose, resulting in higher hydrophilicity and water vapor permeability (WVP) of the composites containing the BSP and BSM fibers. Biodegradable composites incorporating BSG from the brewing industry have promising properties and can be a viable alternative to non-biodegradable polymeric packaging.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Symposia
Macromolecular Symposia Materials Science-Polymers and Plastics
CiteScore
1.50
自引率
0.00%
发文量
226
期刊介绍: Macromolecular Symposia presents state-of-the-art research articles in the field of macromolecular chemistry and physics. All submitted contributions are peer-reviewed to ensure a high quality of published manuscripts. Accepted articles will be typeset and published as a hardcover edition together with online publication at Wiley InterScience, thereby guaranteeing an immediate international dissemination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信