{"title":"Cu8S5/PDA@SA Hydrogel: A Synergistic Photothermal and Photocatalytic Approach for Efficient Solar Steam Sterilization","authors":"Miao Yu, Yuhang Wang, Yihan Liu, Yanxia Wang, Yunfeng Qiu*, Zhuo Ma, Youshan Wang* and Shaoqin Liu*, ","doi":"10.1021/acsaem.4c0265210.1021/acsaem.4c02652","DOIUrl":null,"url":null,"abstract":"<p >Solar absorbers play a crucial role in interfacial solar steam generation (ISSG) technology, facilitating efficient steam generation and sterilization. Nonetheless, limitations in solar conversion efficiency and water transport effects, coupled with challenges in outdoor portability of traditional installations, have hindered the progress in steam sterilization technology. In this work, based on Cu<sub>8</sub>S<sub>5</sub>/PDA nanoparticles (NPs) and sodium alginate (SA) hydrogel, a solar steam sterilization absorber with superior photothermal conversion and antibacterial properties was developed. The Cu<sub>8</sub>S<sub>5</sub>/PDA@SA hydrogel synthesized via in situ deposition demonstrated remarkable full-spectrum absorption performance and stable photothermal conversion ability (37.56%), capable of effectively destroying bacterial structure and metabolic functions through multiple therapeutic mechanisms: photothermal therapy via thermal effect of high temperature and chemodynamic and photodynamic therapies via oxidation of reactive oxygen species and depletion of intracellular glutathione, achieving 100% steam antibacterial efficiency and presenting excellent antibacterial potential under low irradiation conditions. This study proposes a promising avenue for the development of environmentally friendly and easy-to-use solar steam sterilizers for off-grid conditions.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 23","pages":"11240–11252 11240–11252"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02652","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solar absorbers play a crucial role in interfacial solar steam generation (ISSG) technology, facilitating efficient steam generation and sterilization. Nonetheless, limitations in solar conversion efficiency and water transport effects, coupled with challenges in outdoor portability of traditional installations, have hindered the progress in steam sterilization technology. In this work, based on Cu8S5/PDA nanoparticles (NPs) and sodium alginate (SA) hydrogel, a solar steam sterilization absorber with superior photothermal conversion and antibacterial properties was developed. The Cu8S5/PDA@SA hydrogel synthesized via in situ deposition demonstrated remarkable full-spectrum absorption performance and stable photothermal conversion ability (37.56%), capable of effectively destroying bacterial structure and metabolic functions through multiple therapeutic mechanisms: photothermal therapy via thermal effect of high temperature and chemodynamic and photodynamic therapies via oxidation of reactive oxygen species and depletion of intracellular glutathione, achieving 100% steam antibacterial efficiency and presenting excellent antibacterial potential under low irradiation conditions. This study proposes a promising avenue for the development of environmentally friendly and easy-to-use solar steam sterilizers for off-grid conditions.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.