Two-Step Hydrothermal Synthesis of Ni3(NO3)2(OH)4@MnO2 Heterojunction Supported α-MnO2 Material on Foam Nickel for High-Performance Asymmetric Supercapacitors

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yingjie Li, Wenqiang Sun, Bin Gao, Yulan Meng, Xiaofeng Wang*, Xue-Zhi Song* and Zhenquan Tan*, 
{"title":"Two-Step Hydrothermal Synthesis of Ni3(NO3)2(OH)4@MnO2 Heterojunction Supported α-MnO2 Material on Foam Nickel for High-Performance Asymmetric Supercapacitors","authors":"Yingjie Li,&nbsp;Wenqiang Sun,&nbsp;Bin Gao,&nbsp;Yulan Meng,&nbsp;Xiaofeng Wang*,&nbsp;Xue-Zhi Song* and Zhenquan Tan*,&nbsp;","doi":"10.1021/acsaem.4c0216210.1021/acsaem.4c02162","DOIUrl":null,"url":null,"abstract":"<p >Enhancing the performance of electrode materials is an effective strategy for increasing the energy density, power density, and lifespan of supercapacitors. In this study, a one-step hydrothermal method is employed to fabricate a large-sized interlaced lamellar structure with Ni<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>(OH)<sub>4</sub>@MnO<sub>2</sub> (NNM-2) heterojunctions loaded onto nickel foam. Then, a uniform layer of α-MnO<sub>2</sub> nanosheets is deposited to create a hierarchical structure of Ni<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>(OH)<sub>4</sub>@MnO<sub>2</sub>/α-MnO<sub>2</sub> (NNMM-2) via a subsequent hydrothermal process. The interaction between various components, along with an increased number of active sites, significantly improves the electrochemical performance of the electrode material. Furthermore, the designed core–shell structure helps alleviate volume changes during charge and discharge cycles, thereby improving the stability of the material. Consequently, NNMM-2 demonstrates an impressive specific capacitance of 1261.3 F g<sup>–1</sup> when measured at a current density of 1 A g<sup>–1</sup>. When employed as the positive electrode in an asymmetric supercapacitor that features activated carbon as the negative electrode, it demonstrates an energy density of 36.5 W h kg<sup>–1</sup> at a power density of 471.7 W kg<sup>–1</sup>. After 7000 charge–discharge cycles, the capacity retention rate remains at 73% with a Coulombic efficiency of 99%, demonstrating excellent stability and capacitance retention capability. This research offers important perspectives on the creation of enhanced electrode materials for energy storage devices with superior performance.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 23","pages":"11126–11134 11126–11134"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02162","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the performance of electrode materials is an effective strategy for increasing the energy density, power density, and lifespan of supercapacitors. In this study, a one-step hydrothermal method is employed to fabricate a large-sized interlaced lamellar structure with Ni3(NO3)2(OH)4@MnO2 (NNM-2) heterojunctions loaded onto nickel foam. Then, a uniform layer of α-MnO2 nanosheets is deposited to create a hierarchical structure of Ni3(NO3)2(OH)4@MnO2/α-MnO2 (NNMM-2) via a subsequent hydrothermal process. The interaction between various components, along with an increased number of active sites, significantly improves the electrochemical performance of the electrode material. Furthermore, the designed core–shell structure helps alleviate volume changes during charge and discharge cycles, thereby improving the stability of the material. Consequently, NNMM-2 demonstrates an impressive specific capacitance of 1261.3 F g–1 when measured at a current density of 1 A g–1. When employed as the positive electrode in an asymmetric supercapacitor that features activated carbon as the negative electrode, it demonstrates an energy density of 36.5 W h kg–1 at a power density of 471.7 W kg–1. After 7000 charge–discharge cycles, the capacity retention rate remains at 73% with a Coulombic efficiency of 99%, demonstrating excellent stability and capacitance retention capability. This research offers important perspectives on the creation of enhanced electrode materials for energy storage devices with superior performance.

Abstract Image

两步水热合成Ni3(NO3)2(OH)4@MnO2泡沫镍上异质结负载α-MnO2材料用于高性能非对称超级电容器
提高电极材料的性能是提高超级电容器能量密度、功率密度和寿命的有效策略。本研究采用一步水热法制备了Ni3(NO3)2(OH)4@MnO2 (NNM-2)异质结在泡沫镍上的大尺寸交错片层结构。然后,通过后续的水热过程沉积一层均匀的α-MnO2纳米片,形成Ni3(NO3)2(OH)4@MnO2/α-MnO2 (NNMM-2)的层次化结构。各组分之间的相互作用,以及活性位点数量的增加,显著提高了电极材料的电化学性能。此外,设计的核壳结构有助于减轻充放电循环过程中的体积变化,从而提高材料的稳定性。因此,当电流密度为1 a g-1时,NNMM-2显示出令人印象深刻的比电容为1261.3 F - 1。当在以活性炭为负极的非对称超级电容器中用作正极时,在471.7 W kg-1的功率密度下,其能量密度为36.5 Wh kg-1。经过7000次充放电循环后,容量保持率保持在73%,库仑效率达到99%,表现出优异的稳定性和电容保持能力。该研究为创造性能优越的储能装置增强型电极材料提供了重要的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信