Cheng-Xing Cui, Yixi Shen, Jun-Ru He, Yao Fu, Xin Hong, Song Wang*, Jun Jiang* and Yi Luo*,
{"title":"Quantitative Insight into the Electric Field Effect on CO2 Electrocatalysis via Machine Learning Spectroscopy","authors":"Cheng-Xing Cui, Yixi Shen, Jun-Ru He, Yao Fu, Xin Hong, Song Wang*, Jun Jiang* and Yi Luo*, ","doi":"10.1021/jacs.4c1217410.1021/jacs.4c12174","DOIUrl":null,"url":null,"abstract":"<p >During chemical reactions, especially for electrocatalysis and electrosynthesis, the electric field is the most central driving force to regulate the reaction process. However, due to the difficulty of quantitatively measuring the electric field effects caused at the microscopic level, the regulation of electrocatalytic reactions by electric fields has not been well digitally understood yet. Herein, we took the infrared/Raman spectral signals of CO<sub>2</sub> molecules as descriptors to quantitatively predict the effects of different electric fields on the catalytic properties. Taking the metal-doped graphitic C<sub>3</sub>N<sub>4</sub> (<i>g</i>-C<sub>3</sub>N<sub>4</sub>) catalyst as an example, we theoretically investigated the adsorption mode and energy of CO<sub>2</sub> molecules adsorbed on 27 distinct metal single-atom catalysts under different directions and intensities of electric field. Through a machine learning approach, a spectroscopy-property model between infrared/Raman spectral descriptors and adsorption energy/charge transfer was established, which quantified the facilitation of electric field effects on the CO<sub>2</sub> catalytic conversion. Meanwhile, based on the attention mechanism, the catalytic insight of the relationship between spectra and adsorption modes was mined, and the inverse prediction of electric field strength from spectra was realized. This work opens a new quantitative pathway for monitoring and regulating electrocatalytic reactions using machine learning spectroscopy.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 50","pages":"34551–34559 34551–34559"},"PeriodicalIF":15.6000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c12174","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
During chemical reactions, especially for electrocatalysis and electrosynthesis, the electric field is the most central driving force to regulate the reaction process. However, due to the difficulty of quantitatively measuring the electric field effects caused at the microscopic level, the regulation of electrocatalytic reactions by electric fields has not been well digitally understood yet. Herein, we took the infrared/Raman spectral signals of CO2 molecules as descriptors to quantitatively predict the effects of different electric fields on the catalytic properties. Taking the metal-doped graphitic C3N4 (g-C3N4) catalyst as an example, we theoretically investigated the adsorption mode and energy of CO2 molecules adsorbed on 27 distinct metal single-atom catalysts under different directions and intensities of electric field. Through a machine learning approach, a spectroscopy-property model between infrared/Raman spectral descriptors and adsorption energy/charge transfer was established, which quantified the facilitation of electric field effects on the CO2 catalytic conversion. Meanwhile, based on the attention mechanism, the catalytic insight of the relationship between spectra and adsorption modes was mined, and the inverse prediction of electric field strength from spectra was realized. This work opens a new quantitative pathway for monitoring and regulating electrocatalytic reactions using machine learning spectroscopy.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.