{"title":"Structural Analysis of Variants of the Ferritin Light Chain Protein and Its Relationship with Neuroferritinopathy","authors":"Madelin Gómez Hernández*, Alejandro Soto-Ospina, Cristian Andrés Osorio and Andrés Villegas-Lanau, ","doi":"10.1021/acschemneuro.4c0040010.1021/acschemneuro.4c00400","DOIUrl":null,"url":null,"abstract":"<p >Ferritin is a highly conserved spherical protein that stores iron and possesses triple and quadruple symmetry input ports. Additionally, it is composed of light chains that can be affected by post-translational mutations, reducing the iron storage capacity in the brain and leading to neuroferritinopathy, which is a rare disease with limited bioinformatics data. In this study, we analyzed the biochemical mechanism of different ferritin mutations reported in the literature, through the characterization and determination of the <i>in silico</i> structural model by searching databases, implementing bioinformatics programs such as Jalview, NetNGlyc 1.0, NetOGlyc 3.1, and three-dimensional structure predictors with machine learning such as Alphafold, demonstrating the generation of hairpin and steric hindrances that hinder the aggregation of subunits and changes in the size and arrangement of quadruple and triple entry holes of the A96T mutation compared to the wild-type protein, since in the quadruple entry hole, a decrease in area is observed compared to the wild-type protein and the triple entry hole has a decrease in distance measurements of 6.504 Å. This possibly affects the functionality of the protein, thus releasing high concentrations of iron in the brain and causing neurodegeneration.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 24","pages":"4402–4417 4402–4417"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00400","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferritin is a highly conserved spherical protein that stores iron and possesses triple and quadruple symmetry input ports. Additionally, it is composed of light chains that can be affected by post-translational mutations, reducing the iron storage capacity in the brain and leading to neuroferritinopathy, which is a rare disease with limited bioinformatics data. In this study, we analyzed the biochemical mechanism of different ferritin mutations reported in the literature, through the characterization and determination of the in silico structural model by searching databases, implementing bioinformatics programs such as Jalview, NetNGlyc 1.0, NetOGlyc 3.1, and three-dimensional structure predictors with machine learning such as Alphafold, demonstrating the generation of hairpin and steric hindrances that hinder the aggregation of subunits and changes in the size and arrangement of quadruple and triple entry holes of the A96T mutation compared to the wild-type protein, since in the quadruple entry hole, a decrease in area is observed compared to the wild-type protein and the triple entry hole has a decrease in distance measurements of 6.504 Å. This possibly affects the functionality of the protein, thus releasing high concentrations of iron in the brain and causing neurodegeneration.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research