Sarah M. Severson, Bai-Hao Ren, May Cayzer, Ivan Keresztes, Mary L. Johnson, Xiao-Bing Lu, Geoffrey W. Coates
{"title":"Mechanism-Inspired Synthesis of Poly(alkyl malonates) via Alternating Copolymerization of Epoxides and Meldrum’s Acid Derivatives","authors":"Sarah M. Severson, Bai-Hao Ren, May Cayzer, Ivan Keresztes, Mary L. Johnson, Xiao-Bing Lu, Geoffrey W. Coates","doi":"10.1021/jacs.4c13550","DOIUrl":null,"url":null,"abstract":"Direct incorporation of malonate units into polymer backbones is a synthetic challenge. Herein, we report the alternating and controlled anionic copolymerization of epoxides and Meldrum’s acid (MA) derivatives to access poly(alkyl malonates) using (<i>N,N’</i>-bis(salicylidene)phenylenediamine)AlCl and a tris(dialkylamino)cyclopropenium chloride cocatalyst. This unique copolymerization yields a malonate-containing repeat unit while releasing a small molecule upon MA-derivative ring-opening. Mechanistic and computational studies reveal that the nature of the small molecule released influences overall polymerization kinetics, side reaction behavior, and molecular weight control. Controlled copolymerization of MA derivatives with a range of epoxides ultimately yields a library of new poly(alkyl malonates) with diverse and tunable thermal properties.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"68 783-784 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13550","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Direct incorporation of malonate units into polymer backbones is a synthetic challenge. Herein, we report the alternating and controlled anionic copolymerization of epoxides and Meldrum’s acid (MA) derivatives to access poly(alkyl malonates) using (N,N’-bis(salicylidene)phenylenediamine)AlCl and a tris(dialkylamino)cyclopropenium chloride cocatalyst. This unique copolymerization yields a malonate-containing repeat unit while releasing a small molecule upon MA-derivative ring-opening. Mechanistic and computational studies reveal that the nature of the small molecule released influences overall polymerization kinetics, side reaction behavior, and molecular weight control. Controlled copolymerization of MA derivatives with a range of epoxides ultimately yields a library of new poly(alkyl malonates) with diverse and tunable thermal properties.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.