Zhuojie Shi, Shunchang Liu, Ran Luo, Jianpeng Ma, Hao Tian, Xi Wang, Zijing Dong, Xiao Guo, Jinxi Chen, Jiangang Feng, Chuanxiao Xiao, Yuchen Wu, Wenping Hu, Yi Hou
{"title":"Ligand-Mediated Surface Reaction for Achieving Pure 2D Phase Passivation in High-Efficiency Perovskite Solar Cells","authors":"Zhuojie Shi, Shunchang Liu, Ran Luo, Jianpeng Ma, Hao Tian, Xi Wang, Zijing Dong, Xiao Guo, Jinxi Chen, Jiangang Feng, Chuanxiao Xiao, Yuchen Wu, Wenping Hu, Yi Hou","doi":"10.1021/jacs.4c14473","DOIUrl":null,"url":null,"abstract":"The surface passivation with the heterostructure of the 2D/3D stack has been widely used for boosting the efficiency of n-i-p perovskite solar cells (PSCs). However, the disordered quantum well width distribution of 2D perovskites leads to energy landscape inhomogeneity and crystalline instability, which limits the further development of n-i-p PSCs. Here, a versatile approach, ligand-mediated surface passivation, was developed to produce a phase-pure 2D perovskite passivation layer with a homogeneous energy landscape by dual-ligand codeposition. The preferential adsorption of 3,6-dimethyl-carbazole-9-ethylammonium iodide with a large molecular size and lower adsorption energy could regulate the surface reaction between the <i>m</i>-fluorophenylethylammonium iodide and perovskite surface, resulting in a 2D perovskite with a narrow quantum well distribution and a uniform surface potential distribution. Beyond this, the preservation of the surface-confined 2D passivation layer retained a higher electric field at the interface of perovskite and the hole transport layer. As a result, the champion device reached an efficiency of 25.86% for the 0.05 cm<sup>2</sup> device and 25.08% for the 1 cm<sup>2</sup> device, with enhanced operational stability (T<sub>90</sub> > 1000 h) and much better thermal stability. Our work provides deeper insights into efficient and stable 2D passivation for PSCs.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"30 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14473","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The surface passivation with the heterostructure of the 2D/3D stack has been widely used for boosting the efficiency of n-i-p perovskite solar cells (PSCs). However, the disordered quantum well width distribution of 2D perovskites leads to energy landscape inhomogeneity and crystalline instability, which limits the further development of n-i-p PSCs. Here, a versatile approach, ligand-mediated surface passivation, was developed to produce a phase-pure 2D perovskite passivation layer with a homogeneous energy landscape by dual-ligand codeposition. The preferential adsorption of 3,6-dimethyl-carbazole-9-ethylammonium iodide with a large molecular size and lower adsorption energy could regulate the surface reaction between the m-fluorophenylethylammonium iodide and perovskite surface, resulting in a 2D perovskite with a narrow quantum well distribution and a uniform surface potential distribution. Beyond this, the preservation of the surface-confined 2D passivation layer retained a higher electric field at the interface of perovskite and the hole transport layer. As a result, the champion device reached an efficiency of 25.86% for the 0.05 cm2 device and 25.08% for the 1 cm2 device, with enhanced operational stability (T90 > 1000 h) and much better thermal stability. Our work provides deeper insights into efficient and stable 2D passivation for PSCs.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.