{"title":"GroupFace: Imbalanced Age Estimation Based on Multi-Hop Attention Graph Convolutional Network and Group-Aware Margin Optimization","authors":"Yiping Zhang;Yuntao Shou;Wei Ai;Tao Meng;Keqin Li","doi":"10.1109/TIFS.2024.3520020","DOIUrl":null,"url":null,"abstract":"With the recent advances in computer vision, age estimation has significantly improved in overall accuracy. However, owing to the most common methods do not take into account the class imbalance problem in age estimation datasets, they suffer from a large bias in recognizing long-tailed groups. To achieve high-quality imbalanced learning in long-tailed groups, the dominant solution lies in that the feature extractor learns the discriminative features of different groups and the classifier is able to provide appropriate and unbiased margins for different groups by the discriminative features. Therefore, in this novel, we propose an innovative collaborative learning framework (GroupFace) that integrates a multi-hop attention graph convolutional network and a dynamic group-aware margin strategy based on reinforcement learning. Specifically, to extract the discriminative features of different groups, we design an enhanced multi-hop attention graph convolutional network. This network is capable of capturing the interactions of neighboring nodes at different distances, fusing local and global information to model facial deep aging, and exploring diverse representations of different groups. In addition, to further address the class imbalance problem, we design a dynamic group-aware margin strategy based on reinforcement learning to provide appropriate and unbiased margins for different groups. The strategy divides the sample into four age groups and considers identifying the optimum margins for various age groups by employing a Markov decision process. Under the guidance of the agent, the feature representation bias and the classification margin deviation between different groups can be reduced simultaneously, balancing inter-class separability and intra-class proximity. After joint optimization, our architecture achieves excellent performance on several age estimation benchmark datasets. It not only achieves large improvements in overall estimation accuracy but also gains balanced performance in long-tailed group estimation.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"605-619"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10806733/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
With the recent advances in computer vision, age estimation has significantly improved in overall accuracy. However, owing to the most common methods do not take into account the class imbalance problem in age estimation datasets, they suffer from a large bias in recognizing long-tailed groups. To achieve high-quality imbalanced learning in long-tailed groups, the dominant solution lies in that the feature extractor learns the discriminative features of different groups and the classifier is able to provide appropriate and unbiased margins for different groups by the discriminative features. Therefore, in this novel, we propose an innovative collaborative learning framework (GroupFace) that integrates a multi-hop attention graph convolutional network and a dynamic group-aware margin strategy based on reinforcement learning. Specifically, to extract the discriminative features of different groups, we design an enhanced multi-hop attention graph convolutional network. This network is capable of capturing the interactions of neighboring nodes at different distances, fusing local and global information to model facial deep aging, and exploring diverse representations of different groups. In addition, to further address the class imbalance problem, we design a dynamic group-aware margin strategy based on reinforcement learning to provide appropriate and unbiased margins for different groups. The strategy divides the sample into four age groups and considers identifying the optimum margins for various age groups by employing a Markov decision process. Under the guidance of the agent, the feature representation bias and the classification margin deviation between different groups can be reduced simultaneously, balancing inter-class separability and intra-class proximity. After joint optimization, our architecture achieves excellent performance on several age estimation benchmark datasets. It not only achieves large improvements in overall estimation accuracy but also gains balanced performance in long-tailed group estimation.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features