{"title":"Super-Robust Mechanical and Self-Healing Properties of Waterborne Polyurethane Composites","authors":"Wenqing Xu, Ruixian Dai, Meng Wang, Yadong Lv, Guangxian Li, Miqiu Kong","doi":"10.1021/acs.macromol.4c01827","DOIUrl":null,"url":null,"abstract":"Waterborne polyurethane (WPU) with self-healing properties is highly desirable for sustainable development. However, balancing the mechanical and self-healing properties of WPU is challenging. In this study, ultrahigh mechanical and self-healing performance was simultaneously achieved by introducing dopamine-modified iron-oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub>@DA NPs) to a WPU matrix consisting of soft poly(tetramethylene ether) glycol segments and hard isoforone diisocyanate and dimethylolpropionic acid segments. Consequently, the tensile strength and toughness of the WPU/Fe<sub>3</sub>O<sub>4</sub>@DA composite increased to 63.6 MPa and 179.35 MJ·m<sup>–3</sup>, respectively; these values correspond to improvements of 276% and 403% over those of pure WPU (16.9 MPa and 44.50 MJ·m<sup>–3</sup>, respectively). The proposed composite also exhibited excellent self-healing ability at room temperature; that is, the stress and strain self-healing efficiencies after 6 h at 60 °C increased by 93.5% and 100%, respectively. This performance was achieved because the Fe<sub>3</sub>O<sub>4</sub>@DA NPs, which acted as reinforcing fillers, interacted strongly with the hard WPU segments via the covalent reaction of the DA amine groups with the WPU-matrix isocyanate groups, remarkably enhancing mechanical properties. Moreover, catechol–Fe(III) coordination bonds formed between the DA and Fe<sub>3</sub>O<sub>4</sub> NPs, which promoted relaxation behavior and, thus, enhanced the self-healing efficiency. The approach presented in this study constitutes an effective strategy for developing an efficient self-healing polymer with high mechanical strength, which can endow self-healing coatings and adhesives with long service life in severe environments.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"31 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01827","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Waterborne polyurethane (WPU) with self-healing properties is highly desirable for sustainable development. However, balancing the mechanical and self-healing properties of WPU is challenging. In this study, ultrahigh mechanical and self-healing performance was simultaneously achieved by introducing dopamine-modified iron-oxide nanoparticles (Fe3O4@DA NPs) to a WPU matrix consisting of soft poly(tetramethylene ether) glycol segments and hard isoforone diisocyanate and dimethylolpropionic acid segments. Consequently, the tensile strength and toughness of the WPU/Fe3O4@DA composite increased to 63.6 MPa and 179.35 MJ·m–3, respectively; these values correspond to improvements of 276% and 403% over those of pure WPU (16.9 MPa and 44.50 MJ·m–3, respectively). The proposed composite also exhibited excellent self-healing ability at room temperature; that is, the stress and strain self-healing efficiencies after 6 h at 60 °C increased by 93.5% and 100%, respectively. This performance was achieved because the Fe3O4@DA NPs, which acted as reinforcing fillers, interacted strongly with the hard WPU segments via the covalent reaction of the DA amine groups with the WPU-matrix isocyanate groups, remarkably enhancing mechanical properties. Moreover, catechol–Fe(III) coordination bonds formed between the DA and Fe3O4 NPs, which promoted relaxation behavior and, thus, enhanced the self-healing efficiency. The approach presented in this study constitutes an effective strategy for developing an efficient self-healing polymer with high mechanical strength, which can endow self-healing coatings and adhesives with long service life in severe environments.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.