A Study of Fractional Order Financial Crime Model Using the Gegenbauer Wavelet Collocation Method

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Manohara G, Kumbinarasaiah S
{"title":"A Study of Fractional Order Financial Crime Model Using the Gegenbauer Wavelet Collocation Method","authors":"Manohara G, Kumbinarasaiah S","doi":"10.1002/adts.202400998","DOIUrl":null,"url":null,"abstract":"The manuscript investigates the numerical approximation of the fractional mathematical model of the financial crime population dynamics by the Gegenbauer wavelet collocation method. The study aims to enhance the accuracy and efficiency of solving the underlying differential equations that describe these phenomena by utilizing the proposed technique. The financial crime model is a nonlinear coupled system of ordinary differential equations. Using the Gegenbauer wavelets, the novel operational matrices of integration are created. A nonlinear system of ordinary differential equations are transformed into a system of algebraic equations using the characteristics of the Gegenbauer wavelet expansions and the operational matrix of integration, which speeds up processing. Then, this system of algebraic equations is solved using the Newton-iterative technique to find the unknown Gegenbauer coefficients that help to obtain the approximate solution for the system. A numerical illustration is presented to show the efficacy and precision of the approach. The numerical results obtained from the projected approach are compared with the existing methods, such as NDSolve and Runge Kutta methods. These results show that the projected scheme is simple, reliable, and resilient. The findings suggest that this approach can be a powerful tool for researchers and practitioners in the financial sector, aiding in developing crime prevention and intervention strategies. The study concludes with suggestions for future research directions.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400998","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The manuscript investigates the numerical approximation of the fractional mathematical model of the financial crime population dynamics by the Gegenbauer wavelet collocation method. The study aims to enhance the accuracy and efficiency of solving the underlying differential equations that describe these phenomena by utilizing the proposed technique. The financial crime model is a nonlinear coupled system of ordinary differential equations. Using the Gegenbauer wavelets, the novel operational matrices of integration are created. A nonlinear system of ordinary differential equations are transformed into a system of algebraic equations using the characteristics of the Gegenbauer wavelet expansions and the operational matrix of integration, which speeds up processing. Then, this system of algebraic equations is solved using the Newton-iterative technique to find the unknown Gegenbauer coefficients that help to obtain the approximate solution for the system. A numerical illustration is presented to show the efficacy and precision of the approach. The numerical results obtained from the projected approach are compared with the existing methods, such as NDSolve and Runge Kutta methods. These results show that the projected scheme is simple, reliable, and resilient. The findings suggest that this approach can be a powerful tool for researchers and practitioners in the financial sector, aiding in developing crime prevention and intervention strategies. The study concludes with suggestions for future research directions.

Abstract Image

使用格根鲍尔小波配位法的分数阶金融犯罪模型研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信