Yaqi Mo, Yamei Han, Yang Chen, Chunling Fu, Qing Li, Zhuang Liu, Mingming Xiao, Bo Xu
{"title":"ZDHHC20 mediated S-palmitoylation of fatty acid synthase (FASN) promotes hepatocarcinogenesis","authors":"Yaqi Mo, Yamei Han, Yang Chen, Chunling Fu, Qing Li, Zhuang Liu, Mingming Xiao, Bo Xu","doi":"10.1186/s12943-024-02195-5","DOIUrl":null,"url":null,"abstract":"Protein palmitoylation is a reversible fatty acyl modification that undertakes important functions in multiple physiological processes. Dysregulated palmitoylations are frequently associated with the formation of cancer. How palmitoyltransferases for S-palmitoylation are involved in the occurrence and development of hepatocellular carcinoma (HCC) is largely unknown. Chemical carcinogen diethylnitrosamine (DEN)-induced and DEN combined CCl4 HCC models were used in the zinc finger DHHC-type palmitoyltransferase 20 (ZDHHC20) knockout mice to investigate the role of ZDHHC20 in HCC tumourigenesis. Palmitoylation liquid chromatography-mass spectrometry analysis, acyl-biotin exchange assay, co-immunoprecipitation, ubiquitination assays, protein half-life assays and immunofluorescence microscopy were conducted to explore the downstream regulators and corresponding mechanisms of ZDHHC20 in HCC. Knocking out of ZDHHC20 significantly reduced hepatocarcinogenesis induced by chemical agents in the two HCC mouse models in vivo. 97 proteins with 123 cysteine sites were found to be palmitoylated in a ZDHHC20-dependent manner. Among these, fatty acid synthase (FASN) was palmitoylated at cysteines 1471 and 1881 by ZDHHC20. The genetic knockout or pharmacological inhibition of ZDHHC20, as well as the mutation of the critical cysteine sites of FASN (C1471S/C1881S) accelerated the degradation of FASN. Furthermore, ZDHHC20-mediated FASN palmitoylation competed against the ubiquitin-proteasome pathway via the E3 ubiquitin ligase complex SNX8-TRIM28. Our findings demonstrate the critical role of ZDHHC20 in promoting hepatocarcinogenesis, and a mechanism underlying a mutual restricting mode for protein palmitoylation and ubiquitination modifications.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"23 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-024-02195-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein palmitoylation is a reversible fatty acyl modification that undertakes important functions in multiple physiological processes. Dysregulated palmitoylations are frequently associated with the formation of cancer. How palmitoyltransferases for S-palmitoylation are involved in the occurrence and development of hepatocellular carcinoma (HCC) is largely unknown. Chemical carcinogen diethylnitrosamine (DEN)-induced and DEN combined CCl4 HCC models were used in the zinc finger DHHC-type palmitoyltransferase 20 (ZDHHC20) knockout mice to investigate the role of ZDHHC20 in HCC tumourigenesis. Palmitoylation liquid chromatography-mass spectrometry analysis, acyl-biotin exchange assay, co-immunoprecipitation, ubiquitination assays, protein half-life assays and immunofluorescence microscopy were conducted to explore the downstream regulators and corresponding mechanisms of ZDHHC20 in HCC. Knocking out of ZDHHC20 significantly reduced hepatocarcinogenesis induced by chemical agents in the two HCC mouse models in vivo. 97 proteins with 123 cysteine sites were found to be palmitoylated in a ZDHHC20-dependent manner. Among these, fatty acid synthase (FASN) was palmitoylated at cysteines 1471 and 1881 by ZDHHC20. The genetic knockout or pharmacological inhibition of ZDHHC20, as well as the mutation of the critical cysteine sites of FASN (C1471S/C1881S) accelerated the degradation of FASN. Furthermore, ZDHHC20-mediated FASN palmitoylation competed against the ubiquitin-proteasome pathway via the E3 ubiquitin ligase complex SNX8-TRIM28. Our findings demonstrate the critical role of ZDHHC20 in promoting hepatocarcinogenesis, and a mechanism underlying a mutual restricting mode for protein palmitoylation and ubiquitination modifications.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.