{"title":"EpiGePT: a pretrained transformer-based language model for context-specific human epigenomics","authors":"Zijing Gao, Qiao Liu, Wanwen Zeng, Rui Jiang, Wing Hung Wong","doi":"10.1186/s13059-024-03449-7","DOIUrl":null,"url":null,"abstract":"The inherent similarities between natural language and biological sequences have inspired the use of large language models in genomics, but current models struggle to incorporate chromatin interactions or predict in unseen cellular contexts. To address this, we propose EpiGePT, a transformer-based model designed for predicting context-specific human epigenomic signals. By incorporating transcription factor activities and 3D genome interactions, EpiGePT outperforms existing methods in epigenomic signal prediction tasks, especially in cell-type-specific long-range interaction predictions and genetic variant impacts, advancing our understanding of gene regulation. A free online prediction service is available at http://health.tsinghua.edu.cn/epigept .","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"38 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03449-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The inherent similarities between natural language and biological sequences have inspired the use of large language models in genomics, but current models struggle to incorporate chromatin interactions or predict in unseen cellular contexts. To address this, we propose EpiGePT, a transformer-based model designed for predicting context-specific human epigenomic signals. By incorporating transcription factor activities and 3D genome interactions, EpiGePT outperforms existing methods in epigenomic signal prediction tasks, especially in cell-type-specific long-range interaction predictions and genetic variant impacts, advancing our understanding of gene regulation. A free online prediction service is available at http://health.tsinghua.edu.cn/epigept .
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.