{"title":"Transcriptional regulatory network reveals key transcription factors for regulating agronomic traits in soybean","authors":"Wu Jiao, Mangmang Wang, Yijian Guan, Wei Guo, Chang Zhang, Yuanchun Wei, Zhenwei Zhao, Hongyu Ma, Longfei Wang, Xinyu Jiang, Wenxue Ye, Dong Cao, Qingxin Song","doi":"10.1186/s13059-024-03454-w","DOIUrl":null,"url":null,"abstract":"Transcription factors (TFs) bind regulatory genomic regions to orchestrate spatio-temporal expression of target genes. Global dissection of the cistrome is critical for elucidating transcriptional networks underlying complex agronomic traits in crops. Here, we generate a comprehensive genome-wide binding map for 148 TFs using DNA affinity purification sequencing in soybean. We find TF binding sites (TFBSs) exhibit elevated chromatin accessibility and contain more rare alleles than other genomic regions. Intriguingly, the methylation variations at TFBSs partially contribute to expression bias among whole genome duplication paralogs. Furthermore, we construct a soybean gene regulatory network (SoyGRN) by integrating TF-target interactions with diverse datasets encompassing gene expression, TFBS motifs, chromatin accessibility, and evolutionarily conserved regulation. SoyGRN comprises 2.44 million genome-wide interactions among 3188 TFs and 51,665 target genes. We successfully identify key TFs governing seed coat color and oil content and prioritize candidate genes within quantitative trait loci associated with various agronomic traits using SoyGRN. To accelerate utilization of SoyGRN, we develop an interactive webserver ( www.soytfbase.cn ) for soybean community to explore functional TFs involved in trait regulation. Overall, our study unravels intricate landscape of TF-target interactions in soybean and provides a valuable resource for dissecting key regulators for control of agronomic traits to accelerate soybean improvement.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"1 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03454-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription factors (TFs) bind regulatory genomic regions to orchestrate spatio-temporal expression of target genes. Global dissection of the cistrome is critical for elucidating transcriptional networks underlying complex agronomic traits in crops. Here, we generate a comprehensive genome-wide binding map for 148 TFs using DNA affinity purification sequencing in soybean. We find TF binding sites (TFBSs) exhibit elevated chromatin accessibility and contain more rare alleles than other genomic regions. Intriguingly, the methylation variations at TFBSs partially contribute to expression bias among whole genome duplication paralogs. Furthermore, we construct a soybean gene regulatory network (SoyGRN) by integrating TF-target interactions with diverse datasets encompassing gene expression, TFBS motifs, chromatin accessibility, and evolutionarily conserved regulation. SoyGRN comprises 2.44 million genome-wide interactions among 3188 TFs and 51,665 target genes. We successfully identify key TFs governing seed coat color and oil content and prioritize candidate genes within quantitative trait loci associated with various agronomic traits using SoyGRN. To accelerate utilization of SoyGRN, we develop an interactive webserver ( www.soytfbase.cn ) for soybean community to explore functional TFs involved in trait regulation. Overall, our study unravels intricate landscape of TF-target interactions in soybean and provides a valuable resource for dissecting key regulators for control of agronomic traits to accelerate soybean improvement.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.