Zijuan Fan, Wenzhu Song, Yan Ke, Ligan Jia, Songyan Li, Jiao Jiao Li, Yuqing Zhang, Jianhao Lin, Bin Wang
{"title":"XGBoost-SHAP-based interpretable diagnostic framework for knee osteoarthritis: a population-based retrospective cohort study","authors":"Zijuan Fan, Wenzhu Song, Yan Ke, Ligan Jia, Songyan Li, Jiao Jiao Li, Yuqing Zhang, Jianhao Lin, Bin Wang","doi":"10.1186/s13075-024-03450-2","DOIUrl":null,"url":null,"abstract":"To use routine demographic and clinical data to develop an interpretable individual-level machine learning (ML) model to diagnose knee osteoarthritis (KOA) and to identify highly ranked features. In this retrospective, population-based cohort study, anonymized questionnaire data was retrieved from the Wu Chuan KOA Study, Inner Mongolia, China. After feature selections, participants were divided in a 7:3 ratio into training and test sets. Class balancing was applied to the training set for data augmentation. Four ML classifiers were compared by cross-validation within the training set and their performance was further analyzed with an unseen test set. Classifications were evaluated using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, area under the curve(AUC), G-means, and F1 scores. The best model was explained using Shapley values to extract highly ranked features. A total of 1188 participants were investigated in this study, among whom 26.3% were diagnosed with KOA. Comparatively, XGBoost with Boruta exhibited the highest classification performance among the four models, with an AUC of 0.758, G-means of 0.800, and F1 scores of 0.703. The SHAP method reveals the top 17 features of KOA according to the importance ranking, and the average of the experience of joint pain was recognized as the most important features. Our study highlights the usefulness of machine learning in unveiling important factors that influence the diagnosis of KOA to guide new prevention strategies. Further work is needed to validate this approach.","PeriodicalId":8419,"journal":{"name":"Arthritis Research & Therapy","volume":"77 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthritis Research & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13075-024-03450-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
To use routine demographic and clinical data to develop an interpretable individual-level machine learning (ML) model to diagnose knee osteoarthritis (KOA) and to identify highly ranked features. In this retrospective, population-based cohort study, anonymized questionnaire data was retrieved from the Wu Chuan KOA Study, Inner Mongolia, China. After feature selections, participants were divided in a 7:3 ratio into training and test sets. Class balancing was applied to the training set for data augmentation. Four ML classifiers were compared by cross-validation within the training set and their performance was further analyzed with an unseen test set. Classifications were evaluated using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, area under the curve(AUC), G-means, and F1 scores. The best model was explained using Shapley values to extract highly ranked features. A total of 1188 participants were investigated in this study, among whom 26.3% were diagnosed with KOA. Comparatively, XGBoost with Boruta exhibited the highest classification performance among the four models, with an AUC of 0.758, G-means of 0.800, and F1 scores of 0.703. The SHAP method reveals the top 17 features of KOA according to the importance ranking, and the average of the experience of joint pain was recognized as the most important features. Our study highlights the usefulness of machine learning in unveiling important factors that influence the diagnosis of KOA to guide new prevention strategies. Further work is needed to validate this approach.
期刊介绍:
Established in 1999, Arthritis Research and Therapy is an international, open access, peer-reviewed journal, publishing original articles in the area of musculoskeletal research and therapy as well as, reviews, commentaries and reports. A major focus of the journal is on the immunologic processes leading to inflammation, damage and repair as they relate to autoimmune rheumatic and musculoskeletal conditions, and which inform the translation of this knowledge into advances in clinical care. Original basic, translational and clinical research is considered for publication along with results of early and late phase therapeutic trials, especially as they pertain to the underpinning science that informs clinical observations in interventional studies.