Predicted aluminum monoxide phases and their structural evolution under pressure

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhen Jiao, Zheng-tang Liu, Xing-han Li, Fu-sheng Liu, Qi-jun Liu
{"title":"Predicted aluminum monoxide phases and their structural evolution under pressure","authors":"Zhen Jiao, Zheng-tang Liu, Xing-han Li, Fu-sheng Liu, Qi-jun Liu","doi":"10.1016/j.actamat.2024.120667","DOIUrl":null,"url":null,"abstract":"To explore the stable crystal structure and structural evolution of aluminum monoxide (AlO), we predict four novel structures and investigate their stability, mechanical, electronic and Raman properties using particle-swarm optimization (PSO) technique and density functional theory (DFT) calculations. Depending on the symmetry and bonding characteristics, these novel structures exhibit various stability and properties under pressure. The <em>oP</em>-AlO (space group Imm2) is the most stable structure under ambient pressure, while the <em>h</em>-AlO (space group R<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mn is=\"true\"&gt;3&lt;/mn&gt;&lt;mo is=\"true\"&gt;&amp;#xAF;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -846.5 570.5 947.9\" width=\"1.325ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\" transform=\"translate(35,0)\"><use xlink:href=\"#MJMAIN-33\"></use></g><g is=\"true\" transform=\"translate(0,197)\"><use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use x=\"70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\" is=\"true\"><mn is=\"true\">3</mn><mo is=\"true\">¯</mo></mover></math></span></span><script type=\"math/mml\"><math><mover accent=\"true\" is=\"true\"><mn is=\"true\">3</mn><mo is=\"true\">¯</mo></mover></math></script></span>m) structure becomes the most stable above 3 GPa and remains so up to 100 GPa. The <em>h</em>-AlO structure stands out due to distinct bonding interactions at different Wyckoff positions of aluminum atoms, particularly the rhombus arrangement formed by Al-II atoms, which gives rise to a Dirac cone in its electronic structure that is insensitive to pressure. In contrast, the <em>m</em>-AlO (space group C2/m), <em>oP</em>-AlO and <em>oD-</em>AlO (space group I/mmm) structures undergo first-order phase transitions, accompanied by significant structural changes and discontinuities in Al-O bonds. The <em>oP</em>-AlO and <em>oD-</em>AlO structures, in particular, exhibit unstable transformations during these transitions. Additionally, the vibrational characteristics of predicted structures are discussed, and the significant differences facilitate future experimental identification through Raman spectroscopy.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"87 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120667","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the stable crystal structure and structural evolution of aluminum monoxide (AlO), we predict four novel structures and investigate their stability, mechanical, electronic and Raman properties using particle-swarm optimization (PSO) technique and density functional theory (DFT) calculations. Depending on the symmetry and bonding characteristics, these novel structures exhibit various stability and properties under pressure. The oP-AlO (space group Imm2) is the most stable structure under ambient pressure, while the h-AlO (space group R3¯m) structure becomes the most stable above 3 GPa and remains so up to 100 GPa. The h-AlO structure stands out due to distinct bonding interactions at different Wyckoff positions of aluminum atoms, particularly the rhombus arrangement formed by Al-II atoms, which gives rise to a Dirac cone in its electronic structure that is insensitive to pressure. In contrast, the m-AlO (space group C2/m), oP-AlO and oD-AlO (space group I/mmm) structures undergo first-order phase transitions, accompanied by significant structural changes and discontinuities in Al-O bonds. The oP-AlO and oD-AlO structures, in particular, exhibit unstable transformations during these transitions. Additionally, the vibrational characteristics of predicted structures are discussed, and the significant differences facilitate future experimental identification through Raman spectroscopy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信