Highly sensitive terbium-based metal–organic framework scintillators applied in flexible X-ray imaging

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Peng-Kun Wang, Wen-Fei Wang, Bao-Yi Li, Rui-Xuan Qian, Zhao-Xing Gao, Shuai-Hua Wang, Fa-Kun Zheng, Guo-Cong Guo
{"title":"Highly sensitive terbium-based metal–organic framework scintillators applied in flexible X-ray imaging","authors":"Peng-Kun Wang, Wen-Fei Wang, Bao-Yi Li, Rui-Xuan Qian, Zhao-Xing Gao, Shuai-Hua Wang, Fa-Kun Zheng, Guo-Cong Guo","doi":"10.1039/d4qi02736a","DOIUrl":null,"url":null,"abstract":"Scintillators have played an indispensable role in public security and medical diagnosis fields due to their ability to convert X-ray photons into visible light. Metal–organic frameworks (MOFs) have the advantages of designable structures, easy preparation of flexible films and high stability, and hence show great potential in the field of scintillation. However, research on flexible X-ray imaging based on MOF scintillators has been rather limited. The exploration and development of MOF-based flexible scintillation screens would be very promising and exciting. Here, a novel terbium-based MOF (<strong>Tb-MOF-1</strong>) scintillator was synthesized and employed for X-ray detection and imaging. Benefiting from the sensitizing effect of the ligand, <strong>Tb-MOF-1</strong> shows excellent photoluminescence and radioluminescence signals, and its scintillation sensitivity is much higher than that of the commercial scintillator Bi<small><sub>4</sub></small>Ge<small><sub>3</sub></small>O<small><sub>12</sub></small> (BGO). <strong>Tb-MOF-1</strong> shows a low X-ray detection limit of 1.71 μGy s<small><sup>−1</sup></small>, which is lower than the demand for medical diagnosis of 5.5 μGy s<small><sup>−1</sup></small>. The scintillation mechanism of <strong>Tb-MOF-1</strong> is substantiated using spectroscopy and theoretical calculations. Furthermore, the robust structure of <strong>Tb-MOF-1</strong> brings its strong tolerance against water and X-ray dosages, which facilitates its long-term operation. A flexible scintillation screen (<strong>Tb-MOF-screen</strong>) derived from <strong>Tb-MOF-1</strong> was fabricated, achieving a high spatial resolution of 7.7 lp mm<small><sup>−1</sup></small>@MTF 0.2. Ultimately, flexible X-ray imaging tests were successfully carried out by tightly fitting the <strong>Tb-MOF-screen</strong> to different curvature radii wires, which firstly verifies the X-ray imaging potential of Ln-MOF-based scintillation screens for non-planar objects.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"51 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02736a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Scintillators have played an indispensable role in public security and medical diagnosis fields due to their ability to convert X-ray photons into visible light. Metal–organic frameworks (MOFs) have the advantages of designable structures, easy preparation of flexible films and high stability, and hence show great potential in the field of scintillation. However, research on flexible X-ray imaging based on MOF scintillators has been rather limited. The exploration and development of MOF-based flexible scintillation screens would be very promising and exciting. Here, a novel terbium-based MOF (Tb-MOF-1) scintillator was synthesized and employed for X-ray detection and imaging. Benefiting from the sensitizing effect of the ligand, Tb-MOF-1 shows excellent photoluminescence and radioluminescence signals, and its scintillation sensitivity is much higher than that of the commercial scintillator Bi4Ge3O12 (BGO). Tb-MOF-1 shows a low X-ray detection limit of 1.71 μGy s−1, which is lower than the demand for medical diagnosis of 5.5 μGy s−1. The scintillation mechanism of Tb-MOF-1 is substantiated using spectroscopy and theoretical calculations. Furthermore, the robust structure of Tb-MOF-1 brings its strong tolerance against water and X-ray dosages, which facilitates its long-term operation. A flexible scintillation screen (Tb-MOF-screen) derived from Tb-MOF-1 was fabricated, achieving a high spatial resolution of 7.7 lp mm−1@MTF 0.2. Ultimately, flexible X-ray imaging tests were successfully carried out by tightly fitting the Tb-MOF-screen to different curvature radii wires, which firstly verifies the X-ray imaging potential of Ln-MOF-based scintillation screens for non-planar objects.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信