Self-Supervised Anomaly Detection With Neural Transformations

Chen Qiu;Marius Kloft;Stephan Mandt;Maja Rudolph
{"title":"Self-Supervised Anomaly Detection With Neural Transformations","authors":"Chen Qiu;Marius Kloft;Stephan Mandt;Maja Rudolph","doi":"10.1109/TPAMI.2024.3519543","DOIUrl":null,"url":null,"abstract":"Data augmentation plays a critical role in self-supervised learning, including anomaly detection. While hand-crafted transformations such as image rotations can achieve impressive performance on image data, effective transformations of non-image data are lacking. In this work, we study <italic>learning</i> such transformations for end-to-end anomaly detection on arbitrary data. We find that a contrastive loss–which encourages learning diverse data transformations while preserving the relevant semantic content of the data–is more suitable than previously proposed losses for transformation learning, a fact that we prove theoretically and empirically. We demonstrate that anomaly detection using neural transformation learning can achieve state-of-the-art results for time series data, tabular data, text data and graph data. Furthermore, our approach can make image anomaly detection more interpretable by learning transformations at different levels of abstraction.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 3","pages":"2170-2185"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806806","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806806/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data augmentation plays a critical role in self-supervised learning, including anomaly detection. While hand-crafted transformations such as image rotations can achieve impressive performance on image data, effective transformations of non-image data are lacking. In this work, we study learning such transformations for end-to-end anomaly detection on arbitrary data. We find that a contrastive loss–which encourages learning diverse data transformations while preserving the relevant semantic content of the data–is more suitable than previously proposed losses for transformation learning, a fact that we prove theoretically and empirically. We demonstrate that anomaly detection using neural transformation learning can achieve state-of-the-art results for time series data, tabular data, text data and graph data. Furthermore, our approach can make image anomaly detection more interpretable by learning transformations at different levels of abstraction.
基于神经变换的自监督异常检测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信