In-silico identification and validation of Silibinin as a dual inhibitor for ENO1 and GLUT4 to curtail EMT signaling and TNBC progression.

Dheepika Venkatesh, Shilpi Sarkar, Thirukumaran Kandasamy, Siddhartha Sankar Ghosh
{"title":"In-silico identification and validation of Silibinin as a dual inhibitor for ENO1 and GLUT4 to curtail EMT signaling and TNBC progression.","authors":"Dheepika Venkatesh, Shilpi Sarkar, Thirukumaran Kandasamy, Siddhartha Sankar Ghosh","doi":"10.1016/j.compbiolchem.2024.108312","DOIUrl":null,"url":null,"abstract":"<p><p>The aberrant metabolic reprogramming endows TNBC cells with sufficient ATP and lactate required for survival and metastasis. Hence, the intervention of the metabolic network represents a promising avenue to alleviate the Warburg effect in TNBC cells to impair their invasive and metastatic potential. Multitudinous in-silico analysis identified Enolase1 (ENO1) and the surface transporter protein, GLUT4 to be the potential targets for the abrogation of the metabolic network. The expression profiles of ENO1 and GLUT4 genes showed anomalous expression in various cancers, including breast cancer. Subsequently, the functional and physiological interactions of the target proteins were analyzed from the protein-protein interaction network. The pathway enrichment analysis identified the prime cancer signaling pathways in which these proteins are involved. Further, docking results bestowed Silibinin as the concurrent inhibitor of ENO1 and GLUT4. Moreover, the stable interaction of Silibinin with both proteins deciphered the binding free energies values of -48.86 and -104.31 KJ/mol from MMPBSA analysis and MD simulation, respectively. Furthermore, the cell viability, ROS assay, and live-dead imaging underscored the pronounced cytotoxicity of Silibinin, illuminating its capacity to incur apoptosis within TNBC cells. Additionally, glycolysis assay and gene expression analysis demonstrated the silibinin-mediated inhibition of the glycolysis pathway. Eventually, a lipidomic reprogramming towards fatty acid metabolism was established from the elevated lipid droplet accumulation, exogenous fatty acid uptake and de-novo lipogenesis. Nevertheless, repression of EMT and Wnt pathway progression by Silibinin was perceived from the gene expression studies. Overall, the current study highlights the tweaking of intricate signaling crosstalk between glycolysis and the Wnt pathway in TNBC cells through inhibiting ENO1 and GLUT4.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108312"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aberrant metabolic reprogramming endows TNBC cells with sufficient ATP and lactate required for survival and metastasis. Hence, the intervention of the metabolic network represents a promising avenue to alleviate the Warburg effect in TNBC cells to impair their invasive and metastatic potential. Multitudinous in-silico analysis identified Enolase1 (ENO1) and the surface transporter protein, GLUT4 to be the potential targets for the abrogation of the metabolic network. The expression profiles of ENO1 and GLUT4 genes showed anomalous expression in various cancers, including breast cancer. Subsequently, the functional and physiological interactions of the target proteins were analyzed from the protein-protein interaction network. The pathway enrichment analysis identified the prime cancer signaling pathways in which these proteins are involved. Further, docking results bestowed Silibinin as the concurrent inhibitor of ENO1 and GLUT4. Moreover, the stable interaction of Silibinin with both proteins deciphered the binding free energies values of -48.86 and -104.31 KJ/mol from MMPBSA analysis and MD simulation, respectively. Furthermore, the cell viability, ROS assay, and live-dead imaging underscored the pronounced cytotoxicity of Silibinin, illuminating its capacity to incur apoptosis within TNBC cells. Additionally, glycolysis assay and gene expression analysis demonstrated the silibinin-mediated inhibition of the glycolysis pathway. Eventually, a lipidomic reprogramming towards fatty acid metabolism was established from the elevated lipid droplet accumulation, exogenous fatty acid uptake and de-novo lipogenesis. Nevertheless, repression of EMT and Wnt pathway progression by Silibinin was perceived from the gene expression studies. Overall, the current study highlights the tweaking of intricate signaling crosstalk between glycolysis and the Wnt pathway in TNBC cells through inhibiting ENO1 and GLUT4.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信