{"title":"EIF4A3-Induced hsa_circ_0118578 Expression Enhances the Tumorigenesis of Papillary Thyroid Cancer.","authors":"Chan Li, Ping Xie, Meng Luo, Kun Lv, Zewei Cong","doi":"10.1089/cbr.2024.0133","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Circular RNA (circRNA) plays a regulatory role in the malignancy of papillary thyroid cancer (PTC). However, the role of a novel circRNA, hsa_circ_0118578, in PTC is not yet fully understood. This report focuses on unveiling hsa_circ_0118578's effect on PTC cell malignancy and reveals its mechanism in PTC progression. <b><i>Methods:</i></b> Levels of hsa_circ_0118578 in PTC were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The functional roles of hsa_circ_0118578 in PTC cell malignancy were evaluated through Transwell, 5-ethynyl-2<b>'</b>-deoxyuridine (EdU), and wound healing assays. A xenograft model in nude mice was used to examine the effects of hsa_circ_0118578's <i>in vivo</i>. The interaction between eukaryotic translation initiation factor 4A3 (EIF4A3) and hsa_circ_0118578 was confirmed using RNA-binding protein immunoprecipitation, qRT-PCR, and western blotting. <b><i>Results:</i></b> The hsa_circ_0118578 with high expression in PTC tissues was associated with higher tumor node metastasis stage, lymph node metastasis, as well as poor differentiation. Cell functional assays demonstrated that silencing hsa_circ_0118578 inhibited PTC cell proliferation, invasion, and migration. In the xenograft assay, tumorigenicity of PTC cells <i>in vivo</i> was reduced following hsa_circ_0118578 suppression. Additionally, EIF4A3, as an RNA-binding protein, was shown to interact with hsa_circ_0118578 to stabilize its expression in PTC cells. <b><i>Conclusions:</i></b> Upregulated hsa_circ_0118578 in PTC interacts with EIF4A3 to exert oncogenic effects by enhancing hsa_circ_0118578 stability, contributing to PTC development. These findings shed light on the oncogenic role of hsa_circ_0118578 in PTC and suggest it as a potential therapeutic target.</p>","PeriodicalId":55277,"journal":{"name":"Cancer Biotherapy and Radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biotherapy and Radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2024.0133","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Circular RNA (circRNA) plays a regulatory role in the malignancy of papillary thyroid cancer (PTC). However, the role of a novel circRNA, hsa_circ_0118578, in PTC is not yet fully understood. This report focuses on unveiling hsa_circ_0118578's effect on PTC cell malignancy and reveals its mechanism in PTC progression. Methods: Levels of hsa_circ_0118578 in PTC were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The functional roles of hsa_circ_0118578 in PTC cell malignancy were evaluated through Transwell, 5-ethynyl-2'-deoxyuridine (EdU), and wound healing assays. A xenograft model in nude mice was used to examine the effects of hsa_circ_0118578's in vivo. The interaction between eukaryotic translation initiation factor 4A3 (EIF4A3) and hsa_circ_0118578 was confirmed using RNA-binding protein immunoprecipitation, qRT-PCR, and western blotting. Results: The hsa_circ_0118578 with high expression in PTC tissues was associated with higher tumor node metastasis stage, lymph node metastasis, as well as poor differentiation. Cell functional assays demonstrated that silencing hsa_circ_0118578 inhibited PTC cell proliferation, invasion, and migration. In the xenograft assay, tumorigenicity of PTC cells in vivo was reduced following hsa_circ_0118578 suppression. Additionally, EIF4A3, as an RNA-binding protein, was shown to interact with hsa_circ_0118578 to stabilize its expression in PTC cells. Conclusions: Upregulated hsa_circ_0118578 in PTC interacts with EIF4A3 to exert oncogenic effects by enhancing hsa_circ_0118578 stability, contributing to PTC development. These findings shed light on the oncogenic role of hsa_circ_0118578 in PTC and suggest it as a potential therapeutic target.
期刊介绍:
Cancer Biotherapy and Radiopharmaceuticals is the established peer-reviewed journal, with over 25 years of cutting-edge content on innovative therapeutic investigations to ultimately improve cancer management. It is the only journal with the specific focus of cancer biotherapy and is inclusive of monoclonal antibodies, cytokine therapy, cancer gene therapy, cell-based therapies, and other forms of immunotherapies.
The Journal includes extensive reporting on advancements in radioimmunotherapy, and the use of radiopharmaceuticals and radiolabeled peptides for the development of new cancer treatments.