Arhit Chakrabarti, Yang Ni, Ellen Ruth A Morris, Michael L Salinas, Robert S Chapkin, Bani K Mallick
{"title":"Graphical Dirichlet Process for Clustering Non-Exchangeable Grouped Data.","authors":"Arhit Chakrabarti, Yang Ni, Ellen Ruth A Morris, Michael L Salinas, Robert S Chapkin, Bani K Mallick","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the problem of clustering grouped data with possibly non-exchangeable groups whose dependencies can be characterized by a known directed acyclic graph. To allow the sharing of clusters among the non-exchangeable groups, we propose a Bayesian nonparametric approach, termed graphical Dirichlet process, that jointly models the dependent group-specific random measures by assuming each random measure to be distributed as a Dirichlet process whose concentration parameter and base probability measure depend on those of its parent groups. The resulting joint stochastic process respects the Markov property of the directed acyclic graph that links the groups. We characterize the graphical Dirichlet process using a novel hypergraph representation as well as the stick-breaking representation, the restaurant-type representation, and the representation as a limit of a finite mixture model. We develop an efficient posterior inference algorithm and illustrate our model with simulations and a real grouped single-cell data set.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"25 ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of clustering grouped data with possibly non-exchangeable groups whose dependencies can be characterized by a known directed acyclic graph. To allow the sharing of clusters among the non-exchangeable groups, we propose a Bayesian nonparametric approach, termed graphical Dirichlet process, that jointly models the dependent group-specific random measures by assuming each random measure to be distributed as a Dirichlet process whose concentration parameter and base probability measure depend on those of its parent groups. The resulting joint stochastic process respects the Markov property of the directed acyclic graph that links the groups. We characterize the graphical Dirichlet process using a novel hypergraph representation as well as the stick-breaking representation, the restaurant-type representation, and the representation as a limit of a finite mixture model. We develop an efficient posterior inference algorithm and illustrate our model with simulations and a real grouped single-cell data set.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.