Zinc homeostasis regulates caspase activity and inflammasome activation.

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2024-12-17 eCollection Date: 2024-12-01 DOI:10.1371/journal.ppat.1012805
Xiao Gong, Weidi Gu, Shuo Fu, Gonglu Zou, Zhengfan Jiang
{"title":"Zinc homeostasis regulates caspase activity and inflammasome activation.","authors":"Xiao Gong, Weidi Gu, Shuo Fu, Gonglu Zou, Zhengfan Jiang","doi":"10.1371/journal.ppat.1012805","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammasome activation drives pyroptotic cell death and the release of inflammatory cytokines, and many diseases involve its overactivation. Zinc is essential for all organisms as a trace element, but its functions in innate immunity remain undefined. Here, we reported that Zn2+ inhibits caspase-1 to hinder inflammasome activation. We first identified the zinc exporter solute carrier family 30 member 1 (SLC30A1) as an inflammasome regulator, using a genome-wide CRISPR-Cas9-mediated screen. SLC30A1 deficiency suppressed multiple inflammasomes by increasing intracellular levels of Zn2+, which bound and inhibited caspase-1 at its active site residues H237, C244 and C285. Mutation of these residues almost completely blocked zinc binding. Similarly, Zn2+ also inhibited caspase-4/5/11-mediated noncanonical inflammasome activation. Importantly, zinc supplementation significantly relieved cecal ligation and puncture (CLP)-induced sepsis, Imiquimod (IMQ)-induced psoriasis and Alzheimer's disease. Thus, zinc might be used to treat inflammasome-related diseases as a broad-spectrum inflammasome inhibitor.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"20 12","pages":"e1012805"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012805","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammasome activation drives pyroptotic cell death and the release of inflammatory cytokines, and many diseases involve its overactivation. Zinc is essential for all organisms as a trace element, but its functions in innate immunity remain undefined. Here, we reported that Zn2+ inhibits caspase-1 to hinder inflammasome activation. We first identified the zinc exporter solute carrier family 30 member 1 (SLC30A1) as an inflammasome regulator, using a genome-wide CRISPR-Cas9-mediated screen. SLC30A1 deficiency suppressed multiple inflammasomes by increasing intracellular levels of Zn2+, which bound and inhibited caspase-1 at its active site residues H237, C244 and C285. Mutation of these residues almost completely blocked zinc binding. Similarly, Zn2+ also inhibited caspase-4/5/11-mediated noncanonical inflammasome activation. Importantly, zinc supplementation significantly relieved cecal ligation and puncture (CLP)-induced sepsis, Imiquimod (IMQ)-induced psoriasis and Alzheimer's disease. Thus, zinc might be used to treat inflammasome-related diseases as a broad-spectrum inflammasome inhibitor.

锌的平衡调节 Caspase 的活性和炎症小体的激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信