A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.

Q1 Computer Science
Rui Li, Xuanwen Yang, Jun Lou, Junsong Zhang
{"title":"A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.","authors":"Rui Li, Xuanwen Yang, Jun Lou, Junsong Zhang","doi":"10.1186/s40708-024-00242-x","DOIUrl":null,"url":null,"abstract":"<p><p>EEG-based emotion recognition uses high-level information from neural activities to predict emotional responses in subjects. However, this information is sparsely distributed in frequency, time, and spatial domains and varied across subjects. To address these challenges in emotion recognition, we propose a novel neural network model named Temporal-Spectral Graph Convolutional Network (TSGCN). To capture high-level information distributed in time, spatial, and frequency domains, TSGCN considers both neural oscillation changes in different time windows and topological structures between different brain regions. Specifically, a Minimum Category Confusion (MCC) loss is used in TSGCN to reduce the inconsistencies between subjective ratings and predefined labels. In addition, to improve the generalization of TSGCN on cross-subject variation, we propose Deep and Shallow feature Dynamic Adversarial Learning (DSDAL) to calculate the distance between the source domain and the target domain. Extensive experiments were conducted on public datasets to demonstrate that TSGCN outperforms state-of-the-art methods in EEG-based emotion recognition. Ablation studies show that the mixed neural networks and our proposed methods in TSGCN significantly contribute to its high performance and robustness. Detailed investigations further provide the effectiveness of TSGCN in addressing the challenges in emotion recognition.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"30"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655824/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00242-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

EEG-based emotion recognition uses high-level information from neural activities to predict emotional responses in subjects. However, this information is sparsely distributed in frequency, time, and spatial domains and varied across subjects. To address these challenges in emotion recognition, we propose a novel neural network model named Temporal-Spectral Graph Convolutional Network (TSGCN). To capture high-level information distributed in time, spatial, and frequency domains, TSGCN considers both neural oscillation changes in different time windows and topological structures between different brain regions. Specifically, a Minimum Category Confusion (MCC) loss is used in TSGCN to reduce the inconsistencies between subjective ratings and predefined labels. In addition, to improve the generalization of TSGCN on cross-subject variation, we propose Deep and Shallow feature Dynamic Adversarial Learning (DSDAL) to calculate the distance between the source domain and the target domain. Extensive experiments were conducted on public datasets to demonstrate that TSGCN outperforms state-of-the-art methods in EEG-based emotion recognition. Ablation studies show that the mixed neural networks and our proposed methods in TSGCN significantly contribute to its high performance and robustness. Detailed investigations further provide the effectiveness of TSGCN in addressing the challenges in emotion recognition.

脑电情绪识别的时间谱图卷积神经网络模型。
基于脑电图的情绪识别使用来自神经活动的高级信息来预测受试者的情绪反应。然而,这些信息在频率、时间和空间领域是稀疏分布的,并且在不同学科之间存在差异。为了解决情感识别中的这些挑战,我们提出了一种新的神经网络模型——时间谱图卷积网络(TSGCN)。为了捕获分布在时间、空间和频域的高级信息,TSGCN既考虑了不同时间窗的神经振荡变化,也考虑了不同脑区之间的拓扑结构。具体来说,TSGCN中使用了最小类别混淆(MCC)损失来减少主观评分和预定义标签之间的不一致性。此外,为了提高TSGCN对跨主题变化的泛化能力,我们提出了Deep and Shallow feature Dynamic Adversarial Learning (DSDAL)来计算源域和目标域之间的距离。在公共数据集上进行了大量的实验,以证明TSGCN在基于脑电图的情感识别中优于最先进的方法。研究表明,混合神经网络和我们提出的方法对TSGCN的高性能和鲁棒性有显著的贡献。详细的研究进一步证明了TSGCN在解决情感识别挑战方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信