Jun-Sik Kim, Jae Hyun Jun, Jeongmi Lee, Sunyoung Park, Eunae Kim, Su Jung Hwang, Heesu Moon, Seung Hyun Baek, Hark Kyun Kim, Jinsu Park, Yoonsuk Cho, Jihoon Han, Chanhee Kim, Jongho Kim, Hyun-Mo Yang, Changsik Lee, Yeonseok Chung, Hyo-Jong Lee, Dong-Gyu Jo
{"title":"HDAC6 mediates NLRP3 inflammasome activation in the pathogenesis of diabetic retinopathy.","authors":"Jun-Sik Kim, Jae Hyun Jun, Jeongmi Lee, Sunyoung Park, Eunae Kim, Su Jung Hwang, Heesu Moon, Seung Hyun Baek, Hark Kyun Kim, Jinsu Park, Yoonsuk Cho, Jihoon Han, Chanhee Kim, Jongho Kim, Hyun-Mo Yang, Changsik Lee, Yeonseok Chung, Hyo-Jong Lee, Dong-Gyu Jo","doi":"10.1016/j.metabol.2024.156108","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic retinopathy (DR), a major blindness cause in developed countries, is intricately linked to diabetes management and its duration. Here, we demonstrate that HDAC6 mediates NLRP3 inflammasome activation under diabetic conditions, leading to retinal inflammation and degeneration.</p><p><strong>Methods: </strong>This study demonstrated the therapeutic effects of HDAC6 genetic ablation, pharmacological inhibition, and HDAC6-deficient bone marrow transplantation in a diabetes model induced by streptozotocin and a high-fat diet. The therapeutic potential was evaluated from a metabolic perspective, including ocular pathologies such as retinal lesions, neovascularization, and vascular leakage.</p><p><strong>Results: </strong>We discovered that inhibition or genetic ablation of HDAC6 markedly alleviates DR symptoms by dampening NLRP3 inflammasome activation and mitigating retinal damage. Moreover, bone marrow transplantation from HDAC6-deficient mice into wild-type counterparts reversed DR symptoms, underscoring the significance of HDAC6 in systemic immune regulation. The study introduces a novel HDAC6 inhibitor, noted for superior bioavailability and blood-retinal barrier permeability, further highlights the therapeutic promise of targeting HDAC6 in DR.</p><p><strong>Conclusions: </strong>Our findings not only underscore the crucial role of HDAC6 in the immune regulatory mechanisms underlying DR pathogenesis through NLRP3 inflammasome activation but also position HDAC6 inhibition as a promising strategy for addressing diabetic complications beyond DR.</p>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":" ","pages":"156108"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.metabol.2024.156108","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic retinopathy (DR), a major blindness cause in developed countries, is intricately linked to diabetes management and its duration. Here, we demonstrate that HDAC6 mediates NLRP3 inflammasome activation under diabetic conditions, leading to retinal inflammation and degeneration.
Methods: This study demonstrated the therapeutic effects of HDAC6 genetic ablation, pharmacological inhibition, and HDAC6-deficient bone marrow transplantation in a diabetes model induced by streptozotocin and a high-fat diet. The therapeutic potential was evaluated from a metabolic perspective, including ocular pathologies such as retinal lesions, neovascularization, and vascular leakage.
Results: We discovered that inhibition or genetic ablation of HDAC6 markedly alleviates DR symptoms by dampening NLRP3 inflammasome activation and mitigating retinal damage. Moreover, bone marrow transplantation from HDAC6-deficient mice into wild-type counterparts reversed DR symptoms, underscoring the significance of HDAC6 in systemic immune regulation. The study introduces a novel HDAC6 inhibitor, noted for superior bioavailability and blood-retinal barrier permeability, further highlights the therapeutic promise of targeting HDAC6 in DR.
Conclusions: Our findings not only underscore the crucial role of HDAC6 in the immune regulatory mechanisms underlying DR pathogenesis through NLRP3 inflammasome activation but also position HDAC6 inhibition as a promising strategy for addressing diabetic complications beyond DR.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism