Acute Treatment with Fucoidan Ameliorates Traumatic Brain Injury-Induced Neurological Damages and Memory Deficits in Rats: Role of BBB Integrity, Microglial Activity, Neuroinflammation, and Oxidative Stress.
{"title":"Acute Treatment with Fucoidan Ameliorates Traumatic Brain Injury-Induced Neurological Damages and Memory Deficits in Rats: Role of BBB Integrity, Microglial Activity, Neuroinflammation, and Oxidative Stress.","authors":"Shahla Eyvari-Brooshghalan, Rasool Haddadi, Siamak Shahidi, Shahab Ghaderi, Masome Rashno, Ali Kalantari, Iraj Salehi, Alireza Komaki, Abdolrahman Sarihi","doi":"10.1007/s12035-024-04668-6","DOIUrl":null,"url":null,"abstract":"<p><p>There is no acquiesced remedy for the treatment of traumatic brain injury (TBI)-associated impairment, especially cognitive decline. The first 24 h after TBI is a golden time for preventing the progress of the impairments. The present study aimed to examine the acute effects of fucoidan on neurological outcomes and memory performance and investigate its potential mechanisms in rats with TBI. Fucoidan (25, 50, and 100 mg/kg, i.p.) was injected immediately after TBI induction. Veterinary coma scale (VCS), brain edema, blood-brain barrier (BBB) integrity, passive avoidance memory and spatial memory, neuroplasticity, myeloperoxidase (MPO) activity, oxidative stress, and histological alteration were evaluated after TBI induction and fucoidan treatment. The findings revealed that TBI resulted in an enhancement in brain water content and BBB permeability and diminished the performance of passive avoidance memory and spatial memory. These were accompanied by long-term potentiation (LTP) suppression in the hippocampus and the prevention of activities of SOD, catalase, and GPx and enhancement of MPO activity, TNF-α, IL-6, and lipid peroxidation levels in the hippocampus as well as hippocampal neuronal loss. Fascinatingly, acute treatment of TBI rats with fucoidan especially in the higher doses (50 and 100 mg/kg) significantly ameliorated (p < 0.05) neurological outcomes of VCS, cerebral edema, BBB integrity, passive avoidance memory, spatial memory, LTP impairment, and oxidative-antioxidative balance. Also, fucoidan significantly ameliorated hippocampal neuronal loss, TNF-α and IL-6 levels, and MPO activity as an indicator of microglial activation. These outcomes imply that fucoidan can be a hopeful remedy for TBI-associated neuronal impairments. However, further research is necessary to endorse this issue.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"5990-6013"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04668-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
There is no acquiesced remedy for the treatment of traumatic brain injury (TBI)-associated impairment, especially cognitive decline. The first 24 h after TBI is a golden time for preventing the progress of the impairments. The present study aimed to examine the acute effects of fucoidan on neurological outcomes and memory performance and investigate its potential mechanisms in rats with TBI. Fucoidan (25, 50, and 100 mg/kg, i.p.) was injected immediately after TBI induction. Veterinary coma scale (VCS), brain edema, blood-brain barrier (BBB) integrity, passive avoidance memory and spatial memory, neuroplasticity, myeloperoxidase (MPO) activity, oxidative stress, and histological alteration were evaluated after TBI induction and fucoidan treatment. The findings revealed that TBI resulted in an enhancement in brain water content and BBB permeability and diminished the performance of passive avoidance memory and spatial memory. These were accompanied by long-term potentiation (LTP) suppression in the hippocampus and the prevention of activities of SOD, catalase, and GPx and enhancement of MPO activity, TNF-α, IL-6, and lipid peroxidation levels in the hippocampus as well as hippocampal neuronal loss. Fascinatingly, acute treatment of TBI rats with fucoidan especially in the higher doses (50 and 100 mg/kg) significantly ameliorated (p < 0.05) neurological outcomes of VCS, cerebral edema, BBB integrity, passive avoidance memory, spatial memory, LTP impairment, and oxidative-antioxidative balance. Also, fucoidan significantly ameliorated hippocampal neuronal loss, TNF-α and IL-6 levels, and MPO activity as an indicator of microglial activation. These outcomes imply that fucoidan can be a hopeful remedy for TBI-associated neuronal impairments. However, further research is necessary to endorse this issue.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.