Yupeng Wang, Yanhui Deng, Mingmei Feng, Jiaxi Chen, Mengling Zhong, Zhipeng Han, Qi Zhang, Yang Sun
{"title":"Cordycepin Extracted from Cordyceps militaris mitigated CUMS-induced depression of rats via targeting GSK3β/β-catenin signaling pathway.","authors":"Yupeng Wang, Yanhui Deng, Mingmei Feng, Jiaxi Chen, Mengling Zhong, Zhipeng Han, Qi Zhang, Yang Sun","doi":"10.1016/j.jep.2024.119249","DOIUrl":null,"url":null,"abstract":"<p><strong>Ethnopharmacological relevance: </strong>Cordycepin, the main active component of Cordyceps militaris, exhibits various pharmacological activities, including anti-tumor and antioxidant effects. However, its antidepressant effect and the underlying mechanisms remain unclear.</p><p><strong>Aim of review: </strong>This study aimed to explore the antidepressant effect of cordycepin and elucidate the potential molecular mechanisms.</p><p><strong>Materials and methods: </strong>Chronic unpredictable mild stress (CUMS) rat model was established to assess antidepressant effect of cordycepin. Gas chromatography-mass spectrometry (GC-MS) metabolomics with integrated network pharmacology were used to find differential metabolites in serum, brain, and cerebrospinal fluid of rats and identify potential target by cordycepin. Western blot and Real-time PCR were applied to validate the signaling pathway.</p><p><strong>Results: </strong>Cordycepin alleviated CUMS-induced depression-like behaviors by weight gain, sucrose preference increment, immobility time reduction, total travelling distance extension and serum corticosterone levels reduction. Metabolomics showed that cordycepin reversed CUMS-induced metabolic disturbances through alanine and TCA cycle metabolism pathways. Network pharmacology identified GSK3β as a potential target. Cordycepin increased protein levels of p-GSK3β, β-catenin and nuclear β-catenin, and enhanced transcription of downstream genes PKM, LDHA, Cyclin D1 and C-myc in brains of CUMS-induced rats.</p><p><strong>Conclusions: </strong>This study indicated that cordycepin exerted antidepressant effect by modulating GSK3β/β-catenin pathway, suggesting its potential as a candidate agent for depression.</p>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":" ","pages":"119249"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jep.2024.119249","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ethnopharmacological relevance: Cordycepin, the main active component of Cordyceps militaris, exhibits various pharmacological activities, including anti-tumor and antioxidant effects. However, its antidepressant effect and the underlying mechanisms remain unclear.
Aim of review: This study aimed to explore the antidepressant effect of cordycepin and elucidate the potential molecular mechanisms.
Materials and methods: Chronic unpredictable mild stress (CUMS) rat model was established to assess antidepressant effect of cordycepin. Gas chromatography-mass spectrometry (GC-MS) metabolomics with integrated network pharmacology were used to find differential metabolites in serum, brain, and cerebrospinal fluid of rats and identify potential target by cordycepin. Western blot and Real-time PCR were applied to validate the signaling pathway.
Results: Cordycepin alleviated CUMS-induced depression-like behaviors by weight gain, sucrose preference increment, immobility time reduction, total travelling distance extension and serum corticosterone levels reduction. Metabolomics showed that cordycepin reversed CUMS-induced metabolic disturbances through alanine and TCA cycle metabolism pathways. Network pharmacology identified GSK3β as a potential target. Cordycepin increased protein levels of p-GSK3β, β-catenin and nuclear β-catenin, and enhanced transcription of downstream genes PKM, LDHA, Cyclin D1 and C-myc in brains of CUMS-induced rats.
Conclusions: This study indicated that cordycepin exerted antidepressant effect by modulating GSK3β/β-catenin pathway, suggesting its potential as a candidate agent for depression.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.