Contrastive machine learning reveals species -shared and -specific brain functional architecture.

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Li Yang, Guannan Cao, Songyao Zhang, Weihan Zhang, Yusong Sun, Jingchao Zhou, Tianyang Zhong, Yixuan Yuan, Tao Liu, Tianming Liu, Lei Guo, Yongchun Yu, Xi Jiang, Gang Li, Junwei Han, Tuo Zhang
{"title":"Contrastive machine learning reveals species -shared and -specific brain functional architecture.","authors":"Li Yang, Guannan Cao, Songyao Zhang, Weihan Zhang, Yusong Sun, Jingchao Zhou, Tianyang Zhong, Yixuan Yuan, Tao Liu, Tianming Liu, Lei Guo, Yongchun Yu, Xi Jiang, Gang Li, Junwei Han, Tuo Zhang","doi":"10.1016/j.media.2024.103431","DOIUrl":null,"url":null,"abstract":"<p><p>A deep comparative analysis of brain functional connectome across species in primates has the potential to yield valuable insights for both scientific and clinical applications. However, the interspecies commonality and differences are inherently entangled with each other and with other irrelevant factors. Here we develop a novel contrastive machine learning method, called shared-unique variation autoencoder (SU-VAE), to allow disentanglement of the species-shared and species-specific functional connectome variation between macaque and human brains on large-scale resting-state fMRI datasets. The method was validated by confirming that human-specific features are differentially related to cognitive scores, while features shared with macaque better capture sensorimotor ones. The projection of disentangled connectomes to the cortex revealed a gradient that reflected species divergence. In contrast to macaque, the introduction of human-specific connectomes to the shared ones enhanced network efficiency. We identified genes enriched on 'axon guidance' that could be related to the human-specific connectomes. The code contains the model and analysis can be found in https://github.com/BBBBrain/SU-VAE.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103431"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103431","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A deep comparative analysis of brain functional connectome across species in primates has the potential to yield valuable insights for both scientific and clinical applications. However, the interspecies commonality and differences are inherently entangled with each other and with other irrelevant factors. Here we develop a novel contrastive machine learning method, called shared-unique variation autoencoder (SU-VAE), to allow disentanglement of the species-shared and species-specific functional connectome variation between macaque and human brains on large-scale resting-state fMRI datasets. The method was validated by confirming that human-specific features are differentially related to cognitive scores, while features shared with macaque better capture sensorimotor ones. The projection of disentangled connectomes to the cortex revealed a gradient that reflected species divergence. In contrast to macaque, the introduction of human-specific connectomes to the shared ones enhanced network efficiency. We identified genes enriched on 'axon guidance' that could be related to the human-specific connectomes. The code contains the model and analysis can be found in https://github.com/BBBBrain/SU-VAE.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信