{"title":"Identification of genetic loci enriched in obese or lean T2D cases in the Korean population.","authors":"Eun Bi Lim, Yoon Shin Cho","doi":"10.1007/s13258-024-01602-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Obesity causes many complex diseases including type 2 diabetes (T2D). Obesity increases the risk of T2D in Europeans, but there are many non-obese (lean) T2D patients in East Asia.</p><p><strong>Objective: </strong>To discover genetic factors enriched in obese or lean T2D patients, we conducted a genome-wide association (GWA) analysis for T2D stratified by BMI in the Korean population.</p><p><strong>Methods: </strong>In the discovery stage, 654 and 247 individuals classified as obese (BMI > 25) and lean (BMI < 23) T2D patients, respectively, were compared with 3,842 control subjects for GWA analysis. Several BMI-stratified T2D variants detected in the discovery stage were further tested in the replication stage, which included 402 obese and 220 lean T2D cases, and 3,615 controls.</p><p><strong>Results: </strong>Meta-analysis combining the discovery and replication stages detected two variants with genome-wide significance: rs2356138 [P = 2.8 × 10<sup>-8</sup>, OR = 2.06 (1.59-2.65)] in obese T2D subjects and rs9295478 [P = 2.5 × 10<sup>-9</sup>, OR = 1.61 (1.38-1.88)] in lean ones. The SNP rs9295478 is located in CDKAL1, a well-known T2D gene previously identified in several GWA studies. Meanwhile, the SNP rs2356138 is a previously unknown variant located in PKP4.</p><p><strong>Conclusion: </strong>We discovered genetic loci enriched in obese or lean T2D patients in the Korean population. Our findings should facilitate more effective control of T2D in Koreans.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"235-243"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01602-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Obesity causes many complex diseases including type 2 diabetes (T2D). Obesity increases the risk of T2D in Europeans, but there are many non-obese (lean) T2D patients in East Asia.
Objective: To discover genetic factors enriched in obese or lean T2D patients, we conducted a genome-wide association (GWA) analysis for T2D stratified by BMI in the Korean population.
Methods: In the discovery stage, 654 and 247 individuals classified as obese (BMI > 25) and lean (BMI < 23) T2D patients, respectively, were compared with 3,842 control subjects for GWA analysis. Several BMI-stratified T2D variants detected in the discovery stage were further tested in the replication stage, which included 402 obese and 220 lean T2D cases, and 3,615 controls.
Results: Meta-analysis combining the discovery and replication stages detected two variants with genome-wide significance: rs2356138 [P = 2.8 × 10-8, OR = 2.06 (1.59-2.65)] in obese T2D subjects and rs9295478 [P = 2.5 × 10-9, OR = 1.61 (1.38-1.88)] in lean ones. The SNP rs9295478 is located in CDKAL1, a well-known T2D gene previously identified in several GWA studies. Meanwhile, the SNP rs2356138 is a previously unknown variant located in PKP4.
Conclusion: We discovered genetic loci enriched in obese or lean T2D patients in the Korean population. Our findings should facilitate more effective control of T2D in Koreans.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.